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Capitulo 1

Sistemas Formales

El lenguaje natural se refiere a las distintas lenguas utilizadas por las diferentes comu-
nidades de hablantes en sus procesos de comunicacion (Castellano, Inglés, Frances, etc). Se
designan asi porque son convenciones humanas construidas a lo largo de un gran periodo
historico. Asi, cada forma de nombrar las cosas es convencional (esta establecido de una
manera determinada).

Este lenguaje se utiliza para los asuntos méas diversos como son: expresar deseos, preguntar,
suplicar... También se utiliza para hacer afirmaciones sobre lo que ocurre o para describir
objetos y situaciones. Es este tltimo uso el tinico que interesa a la ciencia, ya que se expone
un conocimiento de algo (uso referencial).

El lenguaje natural es el vehiculo de comunicaciéon con el que se consigue una enorme expre-
sividad y riqueza comunicativa. A la hora de expresar conocimientos presenta deficiencias,
ya que pueden presentarse paradojas, en este punto es donde aparecen los mitos como
una creacion colectiva para dar una explicacién racional o no de los diferentes fendémenos
que acaecen en su cotidianidad, dando poderes sobrehumanos a seres inanimados y sobre
los que se despliega una gran carga emocional, la subjetividad. Este lenguaje es ambiguo,
no es exacto, por lo cual posibilita diversas interpretaciones. Es muy poco operativo, pero
es el sistema con mayor capacidad expresiva, que permite conocer el mundo que habitamos
e imaginar otros mundos.

Por otro lado, un lenguaje artificial surge para resolver los problemas que plantea el
lenguaje natural, éste es creado de una manera absolutamente consciente y voluntaria, a
diferencia de la espontaneidad que caracteriza a los lenguajes naturales.

Un caso particular de los lenguajes artificiales son los “lenguajes formales”, los cuales
se definen completamente sin que haya necesidad de darle interpretacion alguna. Ademas



2 Sistemas Formales

se puede identificar con el conjunto de palabras o féormulas bien formadas (cadenas de
signos o caracteres) de longitud finita formadas a partir de un alfabeto (conjunto de signos)
y teniendo en cuenta unas reglas de formacién (gramatica). Por lo tanto, se puede decir
que para definir un lenguaje formal es necesario:

1. Determinar el alfabeto: Conjunto de signos de la lengua (signos primitivos y/o signos
auxiliares).

2. Determinar el conjunto de reglas de formacion; son las que definen qué secuencias o
cadenas de signos del alfabeto son férmulas bien formadas (f.b.f.) de la lengua escrita.
Una regla no contradiga la otra.

3. La designacion anterior debe hacerse sin apelar a ninguna interpretacion.

4. Cuando se determina el lenguaje formal se pueden dar algunas definiciones, es decir,
autorizaciones para usar un signo abreviado (combinacion de signos) en lugar de una
combinacién de signos primitivos o de otros signos ya definidos.

Dentro de los signos auxiliares méas caracteristicos estan los signos de agrupacién: Parénte-
sis, corchetes, llaves. Si se construye para un lenguaje formal, un mecanismo deductivo, esto
lleva al concepto de sistema formal. Un mecanismo deductivo para un lenguaje formal L
esta constituido por el establecimiento de algunas féormulas del lenguaje L, como axiomas,
y/o el establecimiento explicito de un conjunto de reglas de transformacion o reglas de
inferencia; estas determinan qué relaciones entre las formulas del lenguaje constituyen
relaciones de consecuencia inmediata (derivacion o deduccion de una formulas a partir de
otras). Esto sin apelar a interpretaciones.

Los axiomas son también formulas bien formadas con las cuales se inician las teoria cientifi-
cas y que no requieren deducciones sino que se asumen como verdaderas para la construccion
de la misma.

A toda cadena que ha de deducirse a partir de los axiomas por aplicaciones sucesivas de
las reglas de inferencia se le denomina teorema, al igual que a toda féormula que se deduce
de otros teoremas. Esta aplicaciéon sucesiva de reglas recibe el nombre de deduccién o
demostracion, las demostraciones se pueden presentar de dos maneras, por Afirmacion-
Razon o en prosa, en el ambito cientifico se hace uso de la prosa, en estas notas se hara uso
reiteradamente de la afirmacién-razon con fines pedagbgicos. La primera consiste en colo-
car un razonamiento (afirmar alguna f.b.f) y al frente su respectiva justificacion (razon), la
prosa consiste en ir narrando la demostraciéon paso a paso de forma continua.

No siempre se deducen los teoremas a partir de los axiomas, algunos de estos poseen una
estructura logica donde una férmula bien formada se debe presentar para garantizar que
la conclusion sea cierta, por ejemplo en enunciados como “a se deriva de b”, “b se deduce a



partir de a”, “b es consecuencia de a”, “si a entonces b” son equivalentes e implican que es
necesario la presencia de a para que ocurra b, en este caso a recibe el nombre de Hipotesis
mientras que b de Tesis, el enunciado completo es en si el teorema. Cabe resaltar que no
todo teorema tiene hipoétesis.

En el lenguaje de algunas teoria cientificas se hace uso de la palabra Lema como un teo-
rema que sirve para demostrar otro teorema de mayor importancia dentro de dicha teoria,
mientras que la palabra Corolario es un teorema que se deduce a partir del teorema previo
de una forma inmediata.

Por su parte, un Sistema formal es un lenguaje formal dotado de un mecanismo deducti-
vo. Los sistemas formales induce la creaciéon de teorias cientificas o el apoyo para estas. En
el siguiente esquema se muestra la relacién entre los conceptos hasta aqui mencionados.

Teorias Cientificas
Lema

Sistema Formal Teoremas

Corolario

Lenguaje Formal Mecanismo Deductivo
Alfabeto—— Reglas de Formacion = Reglas de Inferencia Axiomas
f.b.f.

Signos Primitivos
Signos Auxiliares Definiciones

La construccion de sistemas formales induce la creacion de modelos que describen de una
mejor forma los fenémenos que aquellos mitos no logran explicar. A continuacion se ilustra
los conceptos mencionados hasta este punto por medio de ejemplos.

Ejemplo 1.1. A continuacion se define un alfabeto asi como una regla de formacion

Alfabeto : {*, A}

Regla de Formacion: Toda cadena finita que inicie con

Bajo estas caracteristicas se ha construido un lenguage formal (alfabeto y regla de formacion)
mas no un sistema formal ya que carece un mecanismo de deduccion. Para las siguientes
cadenas se justificard al frente si cumplen o no con la definicion de ser f.b.f
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a. *A ST es una f.b.f ya que es finita e inicia en *.
b. *; A No es una f.b.f puesto que el signo ; no hace parte del alfabeto.
c. AA A pesar que es finita no es f.b.f. debido a que no comienza en *.

d. %% ... Los puntos suspensivos estd indicando que la cadena es infinita por lo
que no constituye una f.b.f.

¢ Cudntas f.b.f. se puede obtener si las cadenas solo tienen dos elementos? ;Cudntas con
tres elementos? La respuesta a la primer pregunta es 2 las cuales son xx y xA. Con tres
elementos se consiguen 4 formulas bien formadas a saber x x x, x x A, *Ax, *AA. Haga
el mismo proceso para determinar cudntas f.b.f. se obtienen si se utilizan 4 y 5 signos del
alfabeto y generalice para 10 elementos.

Ejemplo 1.2. Se tiene la siguiente informacion: El alfabeto es el conjunto L = {a, b, c}. sSe
tiene un lenguaje formal? ;Se tiene un sistema formal? Ambas prequntas tienen respuesta
negativa debido a que es necesario definir reglas de formacion para inducir un lenguaje for-
mal. En este caso se tienen los elementos para trabajar, pero no que se hard con ellos.

Ejemplo 1.3. Para esta situacion se tiene una regla de formacion
Regla de Formacion: Toda cadena finita de signos que termine en p y ninguna otra

Con esta informacion no se logra un lenguaje formal, ya que se sabe como serdn las cade-
nas, pero no con que elementos se trabaja, es decir, se adolece de un alfabeto.

Ejemplo 1.4. Se cuenta con

1. Alfabeto: {OJ, X, I'}

2. Regla de Formacion: Toda cadena finita de signos del alfabeto que empiece por [ y
ninguna otra.

3. Aziomas:

. OITX
. OXITT

4. Mecanismo Deductivo:

1. Cualquier signo de una cadena se puede duplicar.
1. Si en una cadena existe el signo X X se puede reemplazar por 1.

1. Si en una cadena existe el signo LI puede ser sustituido pr X siempre que la
cadena resultante sea f.b.f.



w. Si en una cadena aparecen los signos I X o U se pueden omitir siempre que
la cadena resultante sea una f.b.f.
v. Si en una cadena apararece la X se le puede sustituir por XO.

vi. No hay otra regla.

Bajo estas condiciones se obtiene un sistema formal debido a que se cuenta con el alfabeto,
las reglas de formacion y el mecanismo de deduccion. A continuacion se obtendrd la cadena
OI1 (la cual es f.b.f.) a partir de los dos aziomas donde se utilizan las diferentes reglas de
inferencia definidas anteriormente

Deduccion H Deduccion

1. aIrx Azxioma 1. 1. 00XII  Azioma 1.

2. 01 Regla 1. en 1 || 2. OOXOIT Regla v. en 1

5. 01T Regla i. en 2 || 3. OUXX  Regla . en 2
4. 04dr Regla 1. en &
5. 0O0OOII  Regla i. en 4
0. UIT Regla iv. en 5

En este caso la formula bien formada OI1 recibe el nombre de conclusion o teorema ya que
se obtuvo a partir de otras formulas bien formadas. Es necesario aclarar que la deduccion
no es lineal, es decir, no existe una forma unica de obtener la conclusion sino que pueden
existir diferentes caminos algunos de los cuales consiste en cambiar el orden de los pasos.
Utilizando cualquiera de los aziomas deducir las f.b.f. siguientes OO T y X

Deduccion H Deduccion

1. 00XI1I1 Axioma 1i. 1. 00XI11 Axioma 1.

2. 00X0OII  Reglawv. en 1 || 2. 000OXII Regla i en 1

5. 00XOIIT Regla i en 2 | 8 UXII Regla 1. en 2

4. 00XXI  Regla iii. en 3| 4. OXOIT Regla v. en 3

5. uIr Regla 1. en 4 || 5. OXX Regla iii. en 4
6. OXXXX  Reglai end
7. 0IXX Regla 1. en 6
8. 0OX Regla w. en 7

En este caso se utilizo el axioma ii.; hacer uso del axioma i. para modificar los razonamien-
tos antertores.

Ejemplo 1.5. Consideremos el sistema formal

1. Alfabeto: {s,t}
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2. Regla de Formacion: Toda cadena finita
3. Mecanismo deductivo:

1. Cualquier signo puede ser duplicado.
1. Si en una cadena aparece el signo tt puede ser omitida.
1. St en una cadena aparece el signo sss se puede sustituir por t

w. A la derecha de s se puede adicionar t.

Una conclusion se puede obtener a partir de otra formula bien formada, esta f.b.f que susten-
ta la conclusion se denomina Hipotesis la cual se asume como verdadera y debe utilizarse
dentro de la deduccion de la conclusion. Se deducirdn los siquientes teoremas

1. Teorema 1: De la f.b.f sstts deducir t.

1. sstts ... Hipotesis
2. sss ... Regla ii. en 1
3.t ... Regla iii. en 2

2. Teorema 2: De la f.b.f. sstts deducir tt.

1. sstts ... Hipotesis
2.1 ... Teorema 1 en 1
3. tt ... Regla i. en 2

3. Teorema 3: La cadena tst se deriva de s.

1. s ... Hipotesis

2. 85 ... Regla i. en 1
3. $858 ... Regla i. en 2
4. ts ... Regla 1. en 3
5. tst ... Regla iv. en 4

Dentro de los aspectos importantes a resaltar es que un teorema se convierte en una for-
mula bien formada y por lo tanto se puede utilizar para deducir otros teorema. Por un
razonamiento andlogo deducir tttt a partir de sstts y ttst cuya hipdtesis es s.

El juego de dominé es una combinacion de 28 piezas en forma rectangular (desde lo plano)
donde se colocan dos ntimeros que pueden variar entre el cero y seis. ;Por qué son 287 Son
exactamente esta cantidad ya que si iniciamos con el cero es posible construir siete piezas:
Los dos ceros, la cual se denotara (0,0), el cero y el uno (0,1), el cero y el dos (0,2) y
asi sucesivamente hasta el cero y el seis (0,6). Para el 1 se forman seis piezas diferentes al
anterior, (1,1), (1,2) hasta el (1,6); la pieza (1,0) es la misma (0, 1) por rotaciéon. Siguiendo
un proceso inductivo resultan las siguientes parejas de ntimeros
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S O e W NN = O

~— O N~
=N W ke Ot O

H | 28

Sin embargo cada numero aparece exactamente siete veces como se puede observar en la
tabla anterior. Para todos es conocido el juego de dominé que se practica en la cotidianidad,
construir el sistema formal que induce este juego.

Ejemplo 1.6. Para resolver el anterior interrogante se tiene que el alfabeto lo constituyen
las piezas de dicho juego, la regla de formacion actia en este caso como la forma en que
pueden ser utilizadas las piezas del domind para ello es necesario saber que dos piezas del
domind se utilizan (para formar una cadena) siempre y cuando tengan un nimero en comin
y que dicho nimero no se vuelve a utilizar para estas piezas. Con base esto

1. Alfabeto: Las 28 piezas del domind que se denotan (i,j) donde i y j son cualquier
numero del 0 al 6, 1,7 =0,1,...,6.

2. Regla de formacion: Una cadena de 2 elementos es f.b.f siempre que tengan un nimero
en comun, dicho niumero se utiliza una y sola una vez.

La cadena (5,3)(3,6) es bien formada por que el 3 es comin y hace el puente entre las fichas
(5,3) v (3,6), para que (5,3)(3,6) siga siendo una f.b.f. se le debe agregar otra pieza del
domind que tenga el 5 o el 6 pero no el 3, asi (5,3)(3,6)(6,1) es bien formada al igual que
(1,5)(5,3)(3,6), pero no (5,3)(3,6)(3,1). En el siguiente diagrama se ilustra la situacion.

Antes de pasar a las reglas de inferencia es necesario recordar que dentro del juego los pares
son aquellas piezas que tienen los mismos nimeros, esto es una convencion no una obliga-
toriedad llamarse de esta forma, sin embargo constituye dentro del juego en una definicion

8. Definicion: Un pieza donde los nimeros son iguales se denominan pares, se escribe
(i,4) para i =0,1,...,6.

Las reglas de inferencia (mecanismo deductivo) consiste en las reglas del juego en los que
estd y no permitido para la practica del mismo es por ello que se proponen las siguientes:
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(5,3)(3.6) sl — .
St es f.b.f. * — T - :
:o: .o. .o. ° NO@Sf.b.f.
(5,3)(3,6)(6,1) (1,5)(5,3)(3,6)
St es f.b.f. St es f.b.f.

4. Reglas de inferencia:

a) A cada jugador le corresponden siete piezas.

b) Inicia el juego aquel que tenga el par (6,6) o en su defecto el par siguiente de
mayor a menor. El siguiente al turno es quien esté a la derecha de quien inicia.

c) Es posible colocar dos pares simultdneamente excepto al inicio.

d) Cede el turno quien no tenga posibilidad de colocar una pieza dentro de la cadena
que esté en la mesa.

e) El juego termina por dos situaciones: Alguien queda sin piezas o teniendo piezas
nadie puede colocar por la configuracion de la mesa en dicho caso se hace la
sumatoria de los puntos (no de las fichas) que se tienen ganando el de la suma
menor.

Con estos elementos se ha construido el sistema formal que rige el juego del domind, en este
caso se estan quitando las ambiguedades posibles que se puedan presentar en el desarrollo
del juego. En esto consiste los sistemas formales en describir de forma precisa y objetiva.
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1.1. Ejercicios

En cada uno de los conjuntos A que se presentan a continuacion determinar si cumplen las
condiciones de ser Lenguaje formal y Sistema Formal, explicando claramente. En el caso
de los sistemas formales haga las deducciones necesarias de los teoremas justificando cada
uno de los pasos.

1. El conjunto A esta determinado por
Alfabeto: {8%7 f(@),g(x)}

2. Para el conjunto A se define
Regla de formacion: Toda cadena finita que inicia en A y termina en A.

3. Sobre A se definen
a) Alfabeto: {U, *}

b) Regla de formacion: Toda cadena de 4 signos del alfabeto que inicie en U.

a) (Cuéles de las siguientes cadenas son f.b.f.7
i) BUUU i) U *x
iii) U; x0 iv) U * sx

b) ;Cuéntas f.b.f. se pueden formar bajo la regla de formacion antes definida?

4. Sea A un conjunto con las siguientes caracteristicas
a) Alfabeto: {1,-2,3,-5,0}
Signos Auxiliares: {+, x, (,)}

b) Regla de formacion: Toda cadena finita de signos del alfabeto cuya suma o mul-
tiplicacién sea un niimero natural.

Resuelva

a) Indique si las siguientes cadenas son f.b.f.
i) (=5)+0 i) 1 x1+(-2) i) 3+3+(-2)+(-2)
iv)0x040 v)14+1+(=5) x (=5H) vi) 0 x (=5) 4+ (=5) x 0

b) Determine el nimero de f.b.f. que se pueden encontrar si se toman solo dos signos
del alfabeto y cuales son.

5. Sea A el lenguaje formal definido como

a) Alfabeto: L1 = {A,0,Q} y Ly = {0}
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b) Reglas de formacion

i. Sizestaen Ly, x es f.b.f.
ii. Siy estden Lo, y es f.b.f.
iii. Sizestdaen Ly y wen Ly, wz es f.b.f.

iv. Ninguna otra secuencia de signos es f.b.f.

a) Construya seis f.b.f.

b) Justifique si las siguientes cadenas de signos son f.b.f.

i) AQ i) Q i) OO
iv) & v) AOA vi) $; 0
vii) $O viii) ©¢ ix) OO

¢) (Cuantas f.b.f. se pueden construir con estas reglas de formacion?

6. Consideremos un conjunto 4 con la siguiente estructura

a) Alfabeto: {a,b,c}
b) Regla de Formacion: Toda cadena finita de signos del alfabeto que inician en a
y terminan en c.
c¢) Reglas de Inferencia:
i. Todo signo del alfabeto puede ser triplicado.

ii. Cualquier cadena de dos signos puede ser omitida siempre y cuando la cadena
resultante sea f.b.f.

iii. Las cadenas aa, bb y cc pueden reemplazarse por b, ¢ y a, respectivamente,
siempre que la cadena resultante sea f.b.f.
iv. No hay otra regla.

d) Axioma: abc
e) Teoremas:

1) abcbe
2) acac
3) ac

7. Sea A el conjunto determinado por

a) Alfabeto: {a,e,m,t,l,i,n}
b) Regla de Formacion: Toda cadena finita que produce una palabra del idioma

espanol.

Encuentre siete f.b.f. que se pueden obtener con cuatro signos del alfabeto y cinco
f.b.f haciendo uso de méas de seis signos del alfabeto.



1.1 Ejercicios 11

8. Construya un sistema formal con dos 2 axiomas, tres reglas de inferencia y hacer dos
deducciones dentro del sistema formal.

9. Para el conjunto A se tiene la siguiente informacion

a) Alfabeto: {p,q}

b) Regla de Formacion: Toda cadena finita de signos del alfabeto que inician en p
y terminan en p.

c) Reglas de Inferencia:

i. Todo signo del alfabeto puede ser duplicado.

ii. Cualquier cadena de dos signos puede conmutar siempre y cuando la cadena
resultante sea f.b.f.

iii. La cadena pp puede reemplazarse por ¢ siempre que la cadena resultante sea
f.b.f.

iv. La cadena pq puede omitirse siempre que la cadena resultante sea f.b.f.

v. No hay otra regla.
d) Axioma: ppp
e) Teoremas:

1) pp

2) papgp
3) paqpaqp

10. Sea A el conjunto con las siguientes caracteristicas

a) Alfabeto: {+, x}

b) Regla de Formacion: Toda cadena finita de signos del alfabeto que inician en +
vy terminan en X.

c¢) Reglas de Inferencia:

i. Todo signo del alfabeto puede ser triplicado.

ii. La cadena + X puede reemplazarse por X X siempre que la cadena resultante
sea f.b.f.

iii. Las cadenas + + 4+ o X X X puede ser omitidas siempre que la cadena
resultante sea f.b.f.

iv. No hay otra regla
d) Axioma: + + X X
e) Teoremas:

1) ++x



12

Sistemas Formales

2) +x
3) + x X

11. Sea A el sistema definido de la siguiente forma:

Alfabeto: {+, %}

Reglas de formacion: Toda cadena finita de simbolos del alfabeto que comience
por +.

Axioma: + *

Regla de inferencia: Toda férmula de A, cuyos dos tltimos simbolos sean + y
%, en este orden, es una consecuencia inmediata de toda férmula de A, cuyos

dos primeros simbolos sean + y *, en este orden. Ninguna otra férmula es una
consecuencia inmediata de otra en A.

Responda

1
2
3
4.
5
6

. (Es A un sistema formal?
. {Es + + * una consecuencia inmediata en A de + * #x 7

. Es 4% una consecuencia inmediata en A de +x%?

LEs + * %+ una consecuencia inmediata de + x x+7

. (Es % * 4+ 4 % una consecuencia inmediata de + * 4+ 4+ ++7

. Dar un ejemplo de una consecuencia inmediata en W de las cadenas + + ++,

%+, %+ xy ookt

12. Por medio de enciclopedias o en internet busque la definicion de cada una de las
siguientes palabras: Axioma, teorema, proposicion, lema, corolario, postulado y de-
mostracién. Compare con lo dicho anteriomente.

13.

14.

Con base en el ejemplo 1.6 construya un sistema formal para otro juegos como son:
El ajedrez, el parqués, algin juego de cartas.

La teoria de conjuntos es el estudio formal de los conjuntos con relacion a sus elemen-
tos, en ella se utiliza las relaciones de pertenencia de un elemento a un conjunto y la
inclusion (subconjunto) de un conjunto en otro. Las operaciones entre conjuntos que
se estudian son la union, la interseccion, la diferencia y la diferencia simétrica. Con
base en esta informacion escriba el lenguaje formal (alfabeto y reglas de formacion)
que utiliza la teorfa de conjuntos.
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1.2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Resumen Conceptual

. Lenguaje natural: Es el lenguaje utilizado por comunidades de humanos en sus

procesos de comunicacion.

. Paradojas: Aquellos que se considera en contraposiciéon con las opiniones o ideas

generales o estandarizadas, es decir, en contraposiciéon con la logica.

. Lenguaje artificial: Lenguaje creado de forma consciente y por consenso.

. Lenguaje Formal: Es un lenguaje artificial donde los simbolos estdn definidos de

manera especifica.

. Alfabeto: Conjunto de signos que se definen en un lenguaje formal.

. Formulas bien formadas: Cadenas finitas de signos del alfabeto.

Reglas de formaciéon: Son las reglas que determinan las formaciones de las cadenas
de signos.

. Definiciones: Son reglas que permiten abreviar signos existentes en el alfabeto.

. Mecanismo deductivo: Esta constituido por axiomas, reglas de inferencia y teore-

mas.

Axiomas: Son férmulas bien formadas que se consideran verdaderas dentro del lengua-
je formal.

Reglas de inferencia: Son formulas o reglas que permiten transformar las cadenas
existentes en el lenguaje formal.

Teorema: Es una cadena que se puede deducir de otra a través de las reglas de
formacion.

Demostraciéon: Es el proceso de obtenciéon del teorema a través de las reglas de
inferencia.

Hipotesis: En enunciados de la forma “Si a entonces b” al término a se le llama
hipétesis, que es una condiciéon para que se dé b.

Tesis: En enunciados de la forma “Si a entonces b” al término b se le llama tesis, que
es la consecuencia de a.

Lema: Es un teorema que se demuestra previamente para facilitar la demostracion
de un teorema de mayor importancia.

Corolario: Es un teorema que se deduce inmediatamente del teorema previo.

Sistema formal: Es un lenguaje formal dotado de un mecanismo deductivo.
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Capitulo 2

Logica Proposicional

2.1. Proposiciones y Conectores

En el capitulo anterior se estudio los sistemas formales, para lo que es necesario definir un
alfabeto, asi como las formulas bien formadas, en el caso de la logica proposicional las f.b.f
son proposiciones, los cuales son enunciados que admiten un tnico valor de verdad ya sea
Verdadero que se denota V o Fulso y se escribe F. Las proposiciones se pueden denotar ya
sea con letras mayusculas latinas P, @), R, etc., con letras latinas mintasculas p, ¢, r, etc.,
o colocando indices (indexar) cada una de ellas como Pj, Py, Ps, ..., P, donde el n puede
asumir cualquier valor natural.

Ejemplo 2.1. Para el enunciado “Mercurio es el planeta mds alejado del sol”, se puede
aseverar que es una proposicion ya que posee un valor de verdad, en este caso es F'. Mien-
tras que el enunciado “;Qué dia es hoy?” no es una proposicion, ya que la respuesta puede
variar entre las sietes posibilidades que tiene la semana, sin embargo dicho enunciado se
puede reformular para que sea una proposicion diciendo “;El dia de hoy es jueves?”, enun-
ciado que admite ya un valor de verdad y que depende del dia particular de la semana. Se
debe tener en cuenta que los enunciados “;Qué dia es hoy?” y “;El dia de hoy es jueves?”

no son equivalentes.

Ejemplo 2.2. La simbolizacion de proposiciones juega un papel muy tmportante dentro
de las matemdticas, ya que permite pasar de un lenguaje natural a un lenguaje propio de
las matemdticas y plantear las generalizaciones que sean posibles, asi para el enunciado
“6+4 = 2" es una proposicion falsa que se puede simbolizar como P:“ 6 +4 = 2”7 y asi
escribir que P es F.

En el conjunto de nimeros enteros se utiliza el simbolo m.c.d(n, m) para hacer alusion al
mayor niamero entero que divide a n y m de forma simultanea, asi m.c.d(4,22) es 2, ya que
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de los divisores de 4 y 22, Dy = {1,2,4} y Do = {1,2,11,22}, los comunes son el 1 y el 2
y por tanto el maximo es 2.

Ejemplo 2.3. En la expresion P,:“ m.c.d(n,2) = 2”7 con n un nimero natural, se debe
conocer quién es n para garantizar que la expresion sea una proposicion, es decir, que tenga
un valor de verdad asociado. Si se hace n =1 se obtiene la proposicion Py :“m.c.d(1,2) = 2”
la cual es falsa, para n = 2, la proposicion Py:“ m.c.d(2,2) = 27 es verdadera, siguiendo
este proceso se deduce que sin es par la proposicion resultante es verdadera y si n es impar
la proposicion es falsa, asi Posy es verdadera y Pigo1 es falsa.

Ejemplo 2.4. Consideremos la proposicion P :“ m.c.d.(4,8) = 3” que tiene valor de ver-
dad falso, ya que los divisores del 4 son el 1, 2 y el 4, mientras que de 8 son 1, 2, 4 y 8,
asi de los divisores comunes el mayor es 4, es por ello que la proposicion P es falsa. A
partir de P se puede construir otra proposicion con el sentido contrario a P, por ejemplo
Q :“m.c.d(4,8) # 3%, la cual constituye la negacion de P y que ademds es verdadera. Dicha
proposicion (Q también se puede escribir como ~ P, donde el simbolo ~ hace alusion a la
negacion.

Con base en el ejemplo 2.4 se sigue que dada una proposicién P, de ella se puede obtener
otra proposicion con valor de verdad contrario, pero sin perder su sentido seméantico (sig-
nificacion). Esta nueva proposicion se llama la negacion de Py se puede simbolizar como
~ P, —P o —P, en el trascurso de las notas se hara alusiéon a la primer notacion.

Para una proposicion P estan asociados dos posibles valores de verdad, V o F', (de alli el
nombre de logica bivalente) lo cual se resume diciendo que para una proposicion P existen
dos posibilidades légicas y se representa en una tabla como sigue

Puesto que la negaciéon de la proposicion P, ~ P, tiene los valores contrarios a los de P
entonces las posibilidades légicas para ~ P seran 2 también, pero en contraposicion a los
valores de P; si P es verdadera entonces ~ P es falsa y si P es falsa, ~ P es verdadera;
esto lo escribimos como

EEE

V| F
F| V
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Para dos proposiciones P y @) existen en total cuatro posibilidades logicas, resultantes de
las combinaciones posibles de los valores de verdad de Py @, estas son: Ambas verdaderas
V'V, la primera verdadera y la segunda falsa V F', la primera falsa y la segunda verdadera
FV vy el altimo caso en que ambas sean falsas F'F. Estas cuatro posibilidades se tabulan
como

o o < <[
nj<nj<a

Notese que se distribuyen los valores para P como V'V y FF, es decir, en bloques de 2,
mientras que para () se alternan entre verdaderas y falsas comenzando con verdadera. Si por
el contrario son tres proposiciones las que estan implicadas, digamos P, QQ y R el nimero
de posibilidades l6gicas son ocho como se resume en la siguiente tabla

]
°
&l

Hg = EH< <<
b < < 3aEg<d
mH < m < m< "<

Ahora, para la proposicion P, se distribuyen las posibilidades como 4 verdaderas y 4 fal-
sas, para la proposicion ) como 2 verdaderas, 2 falsas, 2 verdaderas y 2 falsas y para la
proposicién R se alternan entre verdaderas y falsas.

Resumiendo los antes dicho resulta que para 1 proposicion existen 2 = 2! posibilidades
logicas, para 2 proposiciones, las posibilidades son 4 = 22, para 3 proposiciones 8 = 23
posibilidades, es decir, la cantidad de posibilidades l6gicas crece exponencialmente con base
2, por lo tanto, en el caso que se tengan n proposiciones las cuales se pueden denotar como
P, P, P, ..., P, entonces hay 2" posibilidades logicas.

2.1.1. Proposiciones Compuestas

Ejemplo 2.5. El enunciado “2 es un numero par o 2 es un numero impar” es en Si una
proposicion ya que admite el valor de verdad V', puesto que cumple una de las dos opciones
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que se estdn planteando, en este caso que “2 es un niumero par”. La proposicion dada es
posible escribirla en términos de dos proposiciones a saber P :“2 es un niumero par” y Q:2
es un numero impar”, mientras que el término de enlace “0” entre las proposiciones P y Q
recibe el nombre de conector.

[P

En el ejemplo 2.5 se hace alusion al conector como un enlace entre proposiciones, la “0” no
es el nico entre tales enlaces, la “y” permite también hacer la conexiéon entre dos proposi-
ciones, asi como el “si y solo si” entre otros. La negaciéon ~ no es un conector ya que no
enlaza proposiciones sino que le cambia el valor de verdad a una proposicion.

Las proposiciones se pueden clasificar en dos grupos de acuerdo con el concepto de conector,
el de las proposiciones simples y el de las proposiciones compuestas, en el primero de
estos hay solo una proposiciéon, mientras que en el segundo hay varias proposiciones unidas
o enlazadas por lo menos con un conector.

En el ejemplo 2.5 las proposiciones P y () son simples, mientras que la proposicion “2 es un
nimero par o es un nimero impar” es compuesta llamada disyunciéon. Si P es una proposi-
cion simple entonces ~ P también es una proposiciéon simple.

Una disyuncién es la proposiciéon compuesta que resulta al unir dos proposiciones con
el conectivo “0” que se simboliza “V”, por lo que la disyuncién entre P y () se escribe
P Vv Q. Para determinar cuando una disyunciéon es verdadera o falsa, recurrimos a una
herramienta llamada tabla de verdad de la disyuncién, donde se escriben todas las posibles
combinaciones de los valores de verdad para dos proposiciones y luego el valor de verdad
de la disyuncién entre ellas

Plvie
VIV |V
VIV |F
FIV |V
F|F |F

Regresando al ejemplo 2.5 la proposicion P es verdadera por ser 2 un ntimero par, pero )
es falsa, de alli que la disyuncion PV @ es verdadera como ocurre en la segunda linea de la
tabla de verdad de la disyuncién.

De acuerdo con la tabla de verdad de la disyuncién, dicha proposiciéon compuesta es falsa
siempre que las proposiciones simples P y () sean falsas, en las otras tres posibilidades la
disyuncién es verdadera.
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Ejemplo 2.6. En la proposicion compuesta “Los nimeros 25 y 49 son cuadrados perfec-
tos” se identifican las proposiciones simples P:“25 es un cuadrado perfecto” y Q:%49 es un
cuadrado perfecto”. La proposicion compuesta es verdadera ya que 5% = 25 y 7> = 49 de alli
que sean cuadrados perfectos; ademds P y Q como proposiciones simples son verdaderas
también por igual razon.

En el ejemplo 2.6 el conector que se utilizé fue la “y” que se simboliza como A, mientras que
la proposiciéon compuesta “Los ntimeros 25 y 49 son cuadrados perfectos” se denota como
P AQ y recibe el nombre de conjuncion, la tabla de verdad de esta proposicion compuesta
es

rlQ

njnj<<ﬂ
SIS IS R
o< <

En esta tabla se establece que una conjuncién sbélo es verdadera cuando ambas proposi-
ciones son verdaderas como ocurri6 en el ejemplo 2.6, en las demas posibilidades logicas la
conjuncion es falsa.

Ejemplo 2.7. Para las proposiciones simples P:“ 27+58 es divisible por 57, Q:“m.c.d(12,8)=4"
y R:“111 es nimero primo”, los valores de verdad de P, Q y R son V.,V y F (111 se puede
dividir por 3) respectivamente. Analicemos los valores de verdad de las siguiente proposi-
ciones compuestas

1. PV (~ QAR). Para hallar el valor de verdad de esta proposicion compuesta se inicia
analizando la proposicion compuesta del paréntesis, es decir, ~ Q N R, como Q es
verdadera entonces ~ @ es falsa y por la tabla de verdad de la conjuncion se tiene que
~ QAR es falsa. Ahora bien, en PV (~ QA R), la proposicion simple P es verdadera
y~ QAR es falsa, de acuerdo con la tabla de verdad de la disyuncion se concluye que
PV (~ QA R) es una proposicion verdadera. Esto es posible resumirlo en una tabla
como

PV [ ~e[r[ ]
F F
v F
14

2. (PV R)A ~ (PV R). La proposicion compuesta P\ R es verdadera puesto que P es
verdadera y R falsa, es por ello que ~ (P V R) es falsa debido a que cambia el valor
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de verdad de PV R. Por lo tanto la conjuncion (P V R)A ~ (P V R) es falsa ya que
PV R es verdadera y ~ (P V R) falsa, la tabla resume lo dicho

PlvIR|A|~[PV]R

Vv F

F

Vv F
V

El condicional es la proposiciéon compuesta que resulta al unir dos proposiciones con el
conectivo “Si ... entonces ...” que se simboliza —, se escribe entonces P — @ lo que se lee
como “Si P entonces @”. En el lenguaje corriente se utiliza también una coma (,) a cambio

de la palabra “entonces”.

En el condicional P — @) a P se le llama antecedente, hipotesis, premisa o condicién y a
() consecuente, tesis, conclusion o consecuencia, respectivamente. Cuando el condicional es
l6gicamente verdadero, se dice que existe una implicacion y la expresion se lee “P implica
Q7 se puede simbolizar particularmente como P = Q. Otras formas de leer el condicional

se resumen a continuacion

P 9 P-Q |
Hipotesis Tesis P es suficiente para Q)
Antecedente | Consecuente | @) es necesario para P
Premisa Conclusion P solo si Q
Condicion | Consecuencia | () siempre que P

Q por que P

En la columna tres de la tabla inmediatamente anterior se hace alusiéon a los términos
necesario y suficiente, lo cual permite clasificar los condicionales en tres categorias:

1. Suficientes pero no necesarias: Cuando la condicion basta, pero no es indispensable
para la realizacién de un acontecimiento.

2. Necesarias pero no suficientes: Cuando la condicion es indispensable para la realizacion
de un acontecimiento, pero no basta.

3. Necesarias y suficientes: Cuando la condiciéon basta y es indispensable para que se

realice un acontecimiento.

En los ejemplos siguientes se analiza cada una de las categorizaciones planteadas.
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7

Ejemplo 2.8. La implicacion “St un cuadrildtero es un cuadrado entonces es un rectdngulo
tlustra una condicion suficiente, puesto que todos los cuadrados tienen sus cuatro dngulos
iguales y por lo tanto es un rectangulo, ast es suficiente que sea cuadrado para ser rectangulo
pero mo es necesario ya que no requiere que los lados sean iguales.

Ejemplo 2.9. La proposicion compuesta “Si un nimero es divisible por 2 entonces es di-
vistble por 67 representa una implicacion que es necesaria pero que no es suficiente, debido
a que numeros como 6,8,10,12 son numeros divisibles por 2 pero de ellos 8 y 10 no son
divisibles por 6, asi la condicion es necesaria mds no suficiente.

Ejemplo 2.10. La proposicion “Un nimero es divisible por 3 si la suma de sus digitos es un
multiplo de 3”7 es una implicacion necesaria y suficiente, ya que el niumero 453 es divisible
por 8y ademds la suma de los digitos es tal que 4 + 5+ 3 = 12 que es un maltiplo de 3. St
por el contrario se tiene la suma 2+5+8 = 15 que es un mailtiplo de 3 entonces los posibles
numeros que se forman con los términos de la suma son 258, 285, 528, 582, 825 y 852 ca-
da uno de los cuales es divisible por 3. Es por ello que la condicion es necesaria y suficiente.

Para que la implicacién del ejemplo 2.8 sea necesaria y suficiente se modifica haciendo
alusion a los angulos del cuadrilatero que son los que caracterizan el rectdngulo, asi la
proposicién “Un cuadrilatero es un rectangulo si sus angulos son iguales” es necesaria y
suficiente. Mientras que en el ejemplo 2.9, para que un nimero sea divisible por 6 se re-
quiere también que sea divisible por 3, asi la proposicion “Un ntmero es divisible por 6 si
es divisible por 2 y 3” es una implicacion necesaria y suficiente.

A la proposiciéon compuesta P — ) estan asociados los condicionales

1. Q — P llamado reciproco.
2. ~ P —~ @ llamado contrario.

3. ~ @ —~ P llamado contrarreciproco

Ejemplo 2.11. Consideremos el condicional “Si un nidmero termina en 5 entonces es di-
visible por 57 el cual se puede simbolizar como P — Q) donde P :“Un numero termina en
57 y Q:“un numero es divisible por 57; el condicional P — @Q es verdadero. Ahora bien,
el contrario (~ P —~ @), el reciproco (Q — P) y el contrarreciproco (~ @ —~ P) se
escriben en lenguaje natural como

1. Contrario: “Si un nimero no termina en 5 entonces no es divisible por 5”

2. Reciproco: “Si un nimero es divisible por § entonces termina en 5”7
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3. Contrarreciproco: “St un niumero no es divisible por 5 entonces no termina en 57

El valor de verdad del contrario y del reciproco son falsos, ya que si el nimero es el 40, éste
no termina en 5 y sin embargo se puede dividir por 5 puesto que 5 -8 = 40. Mientras que
el contrarreciproco es verdadera puesto que si el nimero no es divisible por 5 entonces no
termina en 5 por que en caso contrario si lo seria.

En el ejemplo 2.11 se sigue que si un condicional es verdadero, el reciproco no siempre es
cierto, es decir en la implicacion P — @ no pueden cambiarse el antecedente y el consecuente
de forma indistintiva. Mientras que el valor de verdad del contrarreciproco tiene asociado el
mismo valor de verdad del condicional como se demostrard posteriormente en el teorema 2.6.

En la tabla de verdad asociada a una implicacion se sigue que el condicional es falso si el
antecedente es verdadero y el consecuente es falso.

|
!
S

m o< <

<<= <
0< <

En el siguiente ejemplo 2.12 se ilustra una situaciéon matematica en la cual al ser el an-
tecedente verdadero se deduce un consecuente falso, lo que es en si una contradiccion de
acuerdo con la tabla de verdad del condicional dada anteriormente.

Ejemplo 2.12. Por el concepto de potenciacion resulta que 22 = 2 -2, si se asume que
x = 2 entonces la igualdad anterior se puede escribir como x> = 2x, veamos los siquientes
Pasos

1. 2% =2z ... Iqualdad dada

2. 22 —4=2x—-4 ... Restando 4 a ambos lados en 1
3 (x+2)(x—2)=2(x—-2) ... Factorizando en 2

4. x+2=2 ... Cancelando x — 2 en 3

5. x=0 ... Resolviendo la ecuacion en J

Por la eleccion inicial x = 2 y como se hallo que x = 0 entonces por transitividad 2 = 0
igualdad que no es cierta, es por ello que el condicional “Si 22 = 2-2 entonces 2 = 07 es falso
puesto que el antecedente es verdadero, mientras que el consecuente es falso. La contradic-
cion que se obtiene surge en el paso 4 de la deduccion ya que al ser x = 2 entonces x—2 =0y
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el cero no se puede cancelar a ambos lados de la igualdad, por ejemplo 0-5 = 0-3 pero 5 # 3.

Para el ejemplo 2.13 donde se ilustra por que un antecedente puede ser falso y obtener una
conclusion verdadera, se hard uso de las funciones trigométricas, en especial la identidad
cos (v — f) = cosacos 3 + sin asin 3 asi como el hecho que cos90° =0 y sin90° = 1.

Ejemplo 2.13. Veamos que a partir de la proposicion P:“cos45° = 17 la cual es falsa es
posible concluir una proposicion verdadera como @ :“cos45° = sin45°”,

1. cos4b° =1 ... Premisa

2. cos (90° —45%) =1 ...En 1 se hace 45° = 90° — 45°

3. cos90? cos 45 4 8in 90 sin 45° = 1 ... Identidad trigonométrica en 2

4. s8in45° =1 ... Propiedades trigonométricas en 3
5. cos45° = sin 45° ... Transitividad entre 1 y 4

Es por esto que el condicional P — @ equivalente a “Si cos4b5° = 1 entonces cos45° =
sin45°” es verdadero.

El bicondicional es la proposicién compuesta que resulta al unir dos proposiciones con el
conectivo “si y solo si” que se simboliza P < Q) y se lee “P si y solo si ). La expresion “si
y s0lo si” puede abreviarse como “sii”. Cuando un bicondicional es logicamente verdadero,
se dice que existe una equivalencia y la expresion se lee como “P equivale a ()7 se puede
simbolizar particularmente como P < Q.

Ejemplo 2.14. La proposicion “524 es divisible por 6 si y solo si 524 es divisible por 27
representa un bicondicional el cual es falso, puesto que se requiere también que 524 sea di-
vistble por 8 para ser divisible por 6. Mientras que el bicondicional “un tridngulo es isdsceles
sty solo si dos de sus dngulos son iquales” es verdadero, ya que si dos de sus dngulos son
wquales, los lados que se le oponen también lo serdn y por tanto es isdsceles.

En términos de condicionales, el bicondicional es aquella proposicién para la cual se cumple
la condicién necesaria y suficiente. La tabla de verdad de esta proposiciéon compuesta es

njﬂj<<ﬂ
!

< =g m <4
o< g <
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Es decir, para que el bicondicional P < () sea verdadero requiere que tanto P como () ten-
gan el mismo valor de verdad. Los bicondicionales sirven para caracterizar las propiedades
que cumplen los objetos matematicos, asi para que un cuadrilatero sea un cuadrado se
requiere que tenga sus lados y angulos de igual medida, se escribe “Un cuadrilatero es un
cuadrado sii sus lados y dngulos tienen igual medida” esta proposicién caracteriza al con-
junto de los cuadrados. En el caso de la teoria de ntimeros, la proposicion “Un ntimero es
divisible por 5 sii termina en 0 o en 57 es la caracterizacion para los miltiplos de cinco
también conocido como el criterio de divisibilidad del 5. Toda definicién utiliza el conector
“siy solo si”, de alli que se pueda presentar en los dos sentidos: de izquierda a derecha y de
derecha a izquierda.

Con los cuatro conectores V, A, — y < se trabajara en el resto de las notas, no diciendo
asi que son los Ginicos conectores existentes. En la siguiente tabla se resume lo dicho hasta
este punto.

H Proposicion ‘ Representacion ‘ Conector Representacion Se lee H
Disjuncién PvQ 0 \% Pod@
Conjunciéon PAQ y A PyQ@Q
Condicional P—-Q si ... entonces — Si P entonces @)

Bicondicional P qQ si y solo si > P siy solo si Q

2.1.2. Tautologias, Indeterminaciones y Contradicciones

Si al construir la tabla de verdad de una proposiciéon compuesta, todos los posibles val-
ores de verdad son verdaderos entonces la proposiciéon compuesta se llama una tautologia
(etimologicamente quiere decir “la misma expresion”). En el caso en que todos los valores
de verdad sean falsos, se dice que la proposicién es una contradiccién y una indetermi-
nacion sino se presentan los casos anteriores, es decir, si por lo menos un valor de verdad
es diferentes a los demés.

Ejemplo 2.15. Consideremos la proposicion compuesta P N Q <~ (~ PV ~ Q), ya
que estd constituida por dos proposiciones P y @, entonces existen en total 4 posibilidades
logica distribuidas para P como VV F'F, para QQ como VFVE, como ademds se presenta la
negacion de P y de @ entonces los valores de verdad se cambian por FEVV para ~ Py
FVFV para ~ Q. Los datos conocidos se ubican en una tabla como sigue
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PirQ=]~~Plv[~Q]

V V F F
Vv F F Vv
F Vv Vv F
F F Vv Vv

Ahora bien, quedan cuatro columnas de la tabla por completar, se procede, al igual que en
operaciones como [2 — (44 5) + (12 — 8)], de adentro hacia afuera, de los paréntesis a los
corchetes, es por ello que los conectores siguientes son A y \V que segun la tabla de verdad
de los mismos resulta

e ll~[~Plv]~Q)
viviv FlFr] F
VIF|F Flvl v
F|F|V v |V F
F|F|F Vvl v

De los operadores ~ y < que estdn faltando es necesario comenzar con ~ puesto que es el
primero que resulta después del paréntesis, dicha negacion cambia los valores de verdad de
la columna 7 quedando VFFF asi

e fl~[~Plv]~Q)
vivliv vl F[F] F
VIF|F F| F V|V
F|F|Vv Fl V|V F
F|F|F Fl Vv I|v] v

El dltimo conector que resulta es el bicondicional, para ello entre los valores de verdad de
las columnas 2 y 5 y segun la tabla de este conector se concluye

Q| =]~[~P|v|~Q]
viviVv| F | F

Mo <o
N <>
<™
< < <
ESIES TS|
<= =

F 1V
ViV
ViV

Como se obtiene que todas las posibilidades logicas (4 en total) son todas verdaderas en-
tonces se sigue que la proposicion compuesta P N\ Q <~ (~ PV ~ Q) es una tautologia.
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Todas las proposiciones que sean tautologias serdn teoremas dentro del sistema formal de
la logica proposicional y viceversa, es decir, todo teorema es una tautologia. La proposicién
compuesta del ejemplo 2.15 se llama Ley D’Morgan.

Ejemplo 2.16. En la proposicion compuesta PN\ ~ P existe una sola proposicion P es por
ello que solo hay dos posibilidades logicas, VF para P y F'V para ~ P es por ello que la
tabla queda como

PlA|~P]
v[F] F
F|F| vV

La proposicion PA ~ P es una contradiccion, la cual tmplica que una proposicion y Su
negacion no se pueden presentar de forma simultdnea o que no son verdaderas simultdnea-
mente. Caso contrario ocurre con la proposicion PV ~ P la cual es una tautologia e implica
que se presenta la proposicion P o su negacion ~ P, dicha tautologia recibe el nombre de
medio excluido o también dicotomia por presentarse una de las dos posibilidades.

Ejemplo 2.17. Para la proposicion compuesta P — Q) su reciproco estd dado por Q — P,
analicemos las posibilidades dgicas de la proposicion (P — Q) — (Q — P), para lo que
existen cuatro posibilidades logicas, y la tabla de verdad se presenta a continuacion

Pl=lel=le[-]7]

vivivyivivi vV
VIF|F||V|F| V|V
FIVIVIIF|V|F|F
FIVIFI|V|F|V|F

Con base en la tabla de verdad se puede concluir entonces que la proposicion compuesta
(P — Q) — (@ — P) es una indeterminacion, la cual permite concluir que el reciproco
Q — P del condicional P — Q no siempre es verdadero.

Ejemplo 2.18. Analicemos ahora la situacion del contrarreciproco, es decir, determinar
que tipo de proposicion es (P — Q) < (~ Q —~ P), como hay dos proposiciones simples
implicadas P y Q) entonces existen cuatro posibilidades y asi

Pl=lef~]~e[-[~P]
viviviv] Frlv]F

V
F
F

= <™
< =
< < <

Vv
F
Vv

= <™

F
Vv
Vv




2.1 Proposiciones y Conectores 27

Ya que todas las posibilidades logicas resultantes son verdaderas entonces el bicondicional
(P — Q) < (~ Q —~ P) es una tautologia lo que implica que el condicional P — Q y su
contrarreciproco ~ Q —~ P son equivalentes.

2.1.3. Circuitos Légicos

Un circuito 1égico es otra manera de representar un conjunto de proposiciones y operaciones
logicas, haciendo una correspondencia con los circuitos electronicos. Segun Hugo Guarin ([9],
pag. 70), un circuito o red de conmutacion es una combinacion de cables e interruptores
que conectan dos terminales o bornes Ay y As. Cada interruptor puede estar, o abierto,
o cerrado; un interruptor abierto impide que pase la corriente u otro tipo de informaciéon
presente como puede ser el flujo de agua, la movilidad en un sistema de carreteras, mientras
que un interruptor cerrado permite el flujo de la misma.

Ahora veamos en qué casos se da o no el flujo de la corriente, seguin estén los interruptores
en serie o en paralelo. El tipo més simple de circuito es aquel en el cual las terminales Aq
y As se encuentran unidas por un solo cable que contiene un interruptor A.

A e 4/ ° A

Si A esta cerrado pasa corriente entre los extremos A; y As, si A esta abierto como se ilustra
en el grafico anterior entonces no hay transporte de corriente entre estas dos terminales.
En busca de hacer una interpretaciéon desde el punto de vista de la légica proposicional se
puede suponer que si P es la proposiciéon “El interruptor A esta cerrado” entonces P tiene
el valor de verdad verdadero V, mientras que ~ P es la proposicion “El interruptor A esta
abierto” y tiene valor de verdad falso F. En los sistemas de informacion se les asigna 1 para
el caso de estar cerrado y 0 si estd abierto dando cabida al sistema binario que sirve en el
almacenamiento y procesamiento de la informacion.

Consideremos ahora la situacion en que se tengan las dos terminales A; y As y dos inter-
ruptores entre éstos llamesen A y B, esta situacion se puede plantear de dos formas como
se presenta en el siguiente grafico.

A
Ay Ao Ay A~ B _~ Ao
B~

Circuito en Paralelo Circuito en Serie

Los dos tipos de circuitos resultantes se denominan en paralelo (por la correspondencia
geométrica) y en serie. Para un circuito en paralelo, si A y B estan cerrados (verdaderas
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ambas), la corriente fluye entre Ay y Ay, si A esta cerrado (V) y B esta abierto (F) la
corriente se dirige por el camino A; — A — A, pero hay transporte, por lo que el valor de
verdad asociado es verdadero (V), igual situacion ocurre si A esté abierto y B cerrado cuyo
camino es A1 — B — Ag y en el caso de que ambos estén abiertos (F) no hay paso de la
corriente y asfi el valor de verdad es falso. Como se dijo anteriormente A es verdadero si
esta cerrado y falso en caso contrario entonces la informacién se puede tabular como sigue

‘ A ‘ B H Paso de Corriente H Camino ‘
VIV \Y Ay —A—Ay0A — B— A,
VI|IF \% A —A— A
F|V A% A —B— Ay
F|F F No hay corriente

Notese la similitud entre los valores obtenidos en la columna tres de la tabla anterior con
los valores de verdad de la disyunciéon entre dos proposiciones, debido a esto un circuito en
paralelo se le asocia el conector V y se escribe AV B, lo cual indica que los interruptores A
y B que estan en paralelo estdn en disjuncién desde el sentido de la logica proposicional.

Para el caso del circuito en serie el tnico camino posible para que haya corriente entre los
dos puntos terminales es A1 — A— B — As es por ello que la tnica forma en que haya flujo de
corriente es que ambos interruptores A y B estén cerrados, es decir, ambos tener un valor
de verdad verdadero. Al tabular la informacion resulta

‘ A ‘ B H Paso de Corriente H Camino
VIV \% Ay —A—-B— A
VI F F No hay corriente
F|V F No hay corriente
F|F F No hay corriente

Es por ello que los circuitos en serie se asemejan a un conjuncion entre dos proposiciones y
se escribe A A B. Otro tipo de circuito se denomina mixto que es aquel donde se combinan
circuitos en paralelo y en serie, es decir, disyunciones y conjunciones. A continuacién se
presentan dos casos de circuitos mixtos.

B N

A1 A2 Al A2

c R~ | s~ |
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Para el circuito de la izquierda se sigue que los interruptores A y B estan en serie, por lo
que el conector asociado a dicha situacion es A y se escribe A A B. Ahora bien, el resultante
de esta proposicion esta en paralelo con el interruptor C' es por ello que se presenta una
disyuncion entre la proposicion A A B y C, lo cual se escribe como (A A B) V C. Para el
circuito de la derecha se sigue que hay dos circuitos en paralelo lo que se escribe como PV R
y QV S; los resultantes de estos dos circuitos quedan en serie es por ello que existe una con-
juncion entre las proposiciones PV Ry QV.S'y se expresa con la proposicion (PVR)A(QV.S).

En los circuitos mixtos se puede determinar cual es el menor niimero de interruptores que
deben estar cerrados para que fluya la corriente entre los puntos A; y As; para el caso del
circuito mixto de la izquierda solo se necesita que este cerrado C' y el camino a seguir es
A; — C — As y para el de la derecha se necesita que estén cerrados como minimo R y S
(también Py Q o Ry Q o Py S), donde el camino a seguir es Ay — R — S — As.

Si por el contrario se quiere determinar cual es la menor cantidad de interruptores que deben
estar abiertos para que no haya flujo de corriente se tiene para el circuito de la izquierda
que deben ser Ay C o By C. Para el caso del circuito de la derecha se deben dejar abiertos
también dos que pueden ser Py R o ) y S, notese que no es posible dejar abiertos Ry Q
ya que la corriente puede seguir el camino Ay — P — S — As.

Ejemplo 2.19. Dada la proposicion (P A Q) V (RV S) se va a construir el circuito logico
que representa a tal proposicion, para ello se tiene que el conector principal es V, por lo
que se tiene un circuito en paralelo, donde P A Q se ubica en la parte superior y RV S en
la parte inferior. Como en la parte superior se ubica la conjuncion P N\ Q) entonces resulta
otro circuito en este caso en serie, mientras que en la parte inferior resulta otro circuito en
paralelo producto de RV S, la situacion se ilustra a continuacion

Ay R_~ As

s

Para este circuito, la minima cantidad de interruptores que deben estar cerrados para que
fluya la corriente es de 1, que pueden ser R 0 .S y en cuyo caso los caminos posibles son
Ay — R— Ay 0 Ay — S — Asy. Para que no haya corriente entre las terminales A1 y As se
requieren dejar abiertos tres interruptores P, Ry S 0 Q, Ry S.
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Con base en las situaciones anteriores existe una correspondencia entre los conectores y
las proposiciones compuestas (solo conjunciones y disjunciones), lo que permite pasar de
un circuito a una proposiciéon o de una proposicién a un circuito como se ilustré en las
situaciones anteriores, tenga en cuenta los siguientes aspectos cuando se pretende hacer
dichas correspondencias.

1. Para convertir un circuito mixto en forma proposicional, se deben tener en cuenta las
siguientes indicaciones: Iniciar por la parte superior y que esté mas hacia la izquierda
del circuito; después de terminar una linea o un rectangulo, encerrar en un signo
de agrupacion (empezando por paréntesis, luego corchetes y por ultimo llaves) hasta
lograr describir todo el circuito.

2. Para convertir un conjunto de proposiciones y operaciones légicas en circuito debe
iniciar siempre por las partes mas internas; generalmente, primero paréntesis, luego
corchetes y por tltimo las llaves o el enunciado completo.

Un diagrama de flujo es un esquema donde se representan las posibles direcciones en las
que se puede mover la corriente, dichas direcciones se representan por medio de vectores o
segmentos dirigidos. En los ejemplos 2.20 y 2.21 se plantea la situacién de como pasar de un
diagrama de flujos a un circuito y viceversa. Con esto se presenta una triple correspondencia
entre las proposiciones, los circuitos y los diagramas de flujos. Veamos

Ejemplo 2.20. Consideremos el siguiente diagrama de flujos, donde el sentido de las flechas
indica el posible camino que puede sequir la corriente

AN
K\/S /R

2

Para que fluya corriente entre los puntos A1 y As existen tres caminos, el primero es
Ay — Q — R — As “de acuerdo con el grafo dado si falla alguna de las conexiones Q y R
no hay transporte entre A1 y As es por ello que los interruptores Q) y R estdn en serie.
Los otros dos caminos posible son Ay — S —T — Ay y A1 — K — T — Ay en este caso se
puede concluir que K y S se encuentran en paralelo ya que se pueden sequir dos caminos
posibles, sin embargo T estard en serie con K V S puesto que si T falla entonces no hay
flujo de corriente. Con base en esto se puede construir un circuito mizto que dé cuenta de
la situacion
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Ay

-

As

Asociado al circuito anterior estd la proposicion compuesta (Q A R) V [(K V S) AT]. Solo
se requieren dos interruptores cerrados para que fluya la corriente (por ejemplo K yT) e
igual numero para que no haya flujo entre las terminales A1 y Aa, como es el caso de Q yT.

Ejemplo 2.21. Se tiene ahora el circuito mizto

I

Aq

I S

S P

R S

S

Ao

S

El cual tiene asociado la proposicion compuesta (Py NV Pa) V [(PsV Py) A (Ps V Ps)]. Para
diseniar el diagrama de flujos, ndtese que existen seis caminos posibles para transportar
corriente desde Ay a As, éstos son Ay — Py — Asy, Ay — Py — Ay, Ay — P53 — Ps — Ay,
Ay — Py — Py — Ay, Ay — Py — P5s — Ay y Ay — Py — Py — Ao, los que permiten disenar el
siguiente diagrama de flujos. En tal situacion solo se requiere de un interruptor que puede
ser P1 o Py para que haya corriente entre Ay y As y se requieren dejar cuatro circuitos
abiertos para impedir el flujo, los cuales pueden ser Py, Py, P3 y Py 0o Py, Py, Ps y Ps.

Ay

P3 Py
n An X
%/A e

Ay
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2.2. Ejercicios

1. Hacer el siguiente pareamiento

a. Conector para un circuito en paralelo __~(PVQ)
b. P es necesario para @) __F

c. Consecuente: Antecedente falso consecuente verdadero __ Conjunciéon
d. Contrarreciproco de P — @ __PenP—Q
e. Negacion de una disjunciéon entre proposiciones __Qen P —Q
f. Antecedente __~Pv~Q

f. Contrario de P — @ __ Disjuncién
h. Disyuncién de la negacién entre proposiciones __Q—P

i. Consecuente __~P—>~Q
j. Reciproco de P — @) __V

k. Condicional: Antecedente verdadero consecuente falso __P—-Q

1. Conector para un circuito en serie __~Q—-~P

2. Para las proposiciones P: “ Tres es un namero impar” y Q: “ Seis es divisible por tres”.
Exprese en el lenguaje natural los siguientes enunciados simbélicos

a) PV ~Q b) ~PAQ c)Q— P
d) ~(~ P) e) P—Q fy~Q—>~P

3. Sean P:*2 es nimero primo” y Q:“8 es multiplo de cinco”, dos proposiciones simples.
Represente en lenguaje natural cada una de las siguientes proposiciones compuestas
y determine su valor de verdad

a) PVQ b) PAQ )Q@—P
d) PV ~Q e) Q —~P f) ~ P — Q

4. Escriba en el lenguaje de la légica proposicional cada una de las proposiciones que se
presentan a continuacién las cuales estan dadas en lenguaje natural

a) Six es menor que tres entonces es menor que cuatro.
b) Si un nimero no es cero entonces es positivo o es negativo.
¢) No ocurre que, ocho es primo o seis es un nimero par.

d

(&

Es necesario que un cuadrilatero sea rombo para ser cuadrado.

Los ntmeros divisible por seis son pares.
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10.

. Suponga que P, (), Ry S son cuatro proposiciones que tienen por valor de verdad:

Falso, verdadero, verdadero y falso, respectivamente. Halle el valor de verdad de las
siguientes proposiciones compuestas

a) (~ PVQ) =~ R b) P (QVS) &) (PVS) —Q
d) ~ (PVQ)A(Q — R) ) PA((Q — R)VS) ) (PAQ) — R)V S

A partir de las proposiciones simples P :“m.c.d(7,28) = 77, Q:“cos45° = 1"y R: “8
es numero compuesto”’ halle el valor de verdad de las proposiciones simples P, Q y R
asi como de las proposiciones compuestas

a) (PVQ)AR b) (P — Q)A ~ (RV ~ R)
) [PNRe—~Q)—>~P d){[(~R—QA~Q]V(PA~R)} - (Q -~ R)

Las proposiciones compuestas que se presentan a continuacion escribirlas en el lengua-
je de la logica proposicional. Determinar el valor de las mismas, asf como de la negaciéon

a) Esverdad que 3+3#6y4+5=9
b) Si 3+ 5 =28, entonces no es verdad que 3+4 =7y 4+4=38
¢) No es verdad que 2+ 7 =095si, y solosi 2+ 1 =5 implica 5+ 5 =8

. Para las siguientes implicaciones escriba su reciproco, su contrarreciproco y su con-

trario.

a) Siun tridngulo es equildtero, entonces es isésceles.

fny

Si hay un eclipse entonces se oscurece el dia.

o

Si m.c.m(x,5) = 10 entonces z = 10.

U

Si un mes del ano tiene 28 dias entonces el mes es febrero.

™

Si un triangulo tiene dos angulos iguales, entonces es isosceles.

Si una figura plana es un cuadrado entonces es un rectangulo.

S~

Si un triangulo rectangulo es isdsceles entonces los angulos agudos son de 45°.

Q

)
)
)
)
)
)
)
)

>=

Si dos rectas distintas son paralelas, entonces su intersecciéon es el conjunto vacio.

. Determine el valor de verdad del reciproco, contrarreciproco y contrario del literal

anterior asi como de la implicacion dada.

Clasifique las siguiente implicaciones en necesarias, suficientes, necesarias y suficientes
o ninguna de las dos

a) Ser nlimero primo para ser impar.
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b) Ser triangulo isosceles para ser equilatero.
¢) Ser cuadrado para ser rombo.

d) Terminar en cinco para ser divisible por cinco.

e) Ser divisible por 6 para que un nimero sea multiplo de 3.
2

) Que n sea un nimero positivo para que n® sea positivo

S~

g) Tener los lados congruentes para ser poligono regular.
h) Ser tridngulo equilatero para ser tridngulo equiangulo.

1) Ser entero positivo para ser natural.

11. Escribir las caracterizaciones (el conector es un bicondicional) para los siguientes

objetos matematicos

a) Un namero divisible por 10.
b) Un cuadrilatero que es rombo.
¢) Un namero primo.
d)
)
)

[&

f

Un poligono regular.
Un ntmero divisible por 7.

Las diagonales de un cuadrilatero de n lados con n > 3.

12. Escribe la negacién de cada uno de los siguientes enunciados de la manera mas simple

posible

a) Sino caen los precios de las acciones, aumenta la demanda.

Ni llueve ni hace calor.

_*U o o

Usted aprueba el afio si y solamente si estudia con dedicacion.

Ambos, el 25 y el 49 son cuadrados perfectos.

@

Si cuatro es divisible por dos, entonces tanto dieciséis como doce son divisibles
por dos.

)
)
) El tiene fiebre u otitis.
)
)
)

S~

13. Si las proposiciones P, ), R son verdaderas; y las proposiciones T', W y S son falsas,

complete el siguiente cuadrado méagico, de tal manera que las proposiciones compues-
tas, resultantes, sean verdaderas (tanto las de las columnas, como las diagonales; y
leidas en cualquier direccion), en la fila del medio deben ir los conectores y se deben
utilizar las seis proposiciones simples.

I
=l | |
LI Is]
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14.

15.

16.

17.

18.

19.

20.

Sabiendo que las proposiciones Py y Ps son falsas, determine el valor de verdad de las
demas proposiciones para que las proposiciones compuestas obtenidas por columnas
(de arriba a abajo) y en diagonal tengan valores de verdad verdaderos

[Pl ps Pl B

Sean P, Q y R proposiciones tales que P es verdadera y @ es falsa. ;Qué puede
afirmarse del valor de verdad de cada una de las siguientes proposiciones compuestas?

a) @ — (P — (RAQ)) b) P —(QVR)

Sean P, (), R proposiciones
a) Si RV P, QA P son falsas y P es falsa ;Qué puede afirmarse del valor de verdad
de Q y R?

b) Si(Q — R) — [(PAQ)V R] es falsas ;Qué se puede afirmar del valor de verdad
de P, Qy R?

Se sabe que la proposicion compuesta [(P — Q)A ~ Q] — P es falsa y que P es una
proposicion falsa. ;Cémo debe ser el valor de verdad de la proposicion Q7

Para cada una de las siguientes proposiciones compuestas determine si es una tau-
tologia, una contradiccién o una indeterminaciéon

) (PAQUA(~PV~Q) b)(P—Q) —(~PVQ) ¢)[(P—QA~Q] —»~P
d) PVQ —~(QVP) e)[((P—> R AR —=~R f)~][(~PV~P)—n~ P

Construya dos tautologias, dos indeterminadas y dos contradicciones.

Resuelva los siguientes problemas:

a) Tia Amelia acompandé a sus tres sobrinos en un viaje a la Costa. Después, cada
uno conto lo siguiente:

i. Hugo: “Hemos conocido a Barranquilla, pero no a Cartagena; también hemos
visitado a Santa Marta.”

ii. Paco: “Hemos conocido a Barranquilla y a Cartagena. Pero no hemos visitado
a Santa Marta ni a Sincelejo.”
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21.

Aq

22.

23.

24.

iii. Luis: “No hemos conocido a Barranquilla pero hemos visitado a Santa Mar-

ta 7

Si se sabe que cada uno dijo una y s6lo una mentira, ;A donde fueron realmente
con tia Amelia estas simpéaticas criaturas?

b) Juan y Pedro mienten de vez en cuando. Juan dice a Pedro: “Cuando yo no
miento, t4 no mientes” y Pedro le responde “Y cuando yo miento, ti mientes”.
;Puede ser que en esta conversacion uno mienta y otro diga la verdad? Justifique
su respuesta.

Para el siguiente circuito determine la proposicién compuesta que la describe e indique
cual es el menor camino que la corriente debe seguir entre los puntos Ay y As, es decir,
para que pase por la menor cantidad de interruptores

]
sl -
gy -

Con base en las proposiciones que se presentan a continuacién, construya el circuito
equivalente asi como el diagrama de flujos

a) [(Pl A PQ) A Pg] V [P4 A (P5 V Pﬁ)] b) P A [(PQ A P3) V (P4 VAN P5)] A Py

c) [(PrV )V (P3APy)l A Ps d) [(PLV )V (P V PO A[(Ps A Fs) V Pr] A Py

Construya los circuitos equivalente a las siguientes proposiciones compuestas. Halle
la menor cantidad de interruptores abiertos para que no fluya la corriente y la menor
cantidad de interruptores cerrados para que se haya flujo.

a) {(Pl V PQ) VAN [(Pg vV P4) vV (P5 V Pﬁ)]} V {P7 AN [(Pg V Pg) V (P10 VAN PH)]}
b) (Pl V PQ) A {[(Pg \Y P4) VAN (P5 V P@)] A P7} A (Pg V Pg) A [(Plo V P11) vV (P12 V Plg)]

Construya un material didactico llamado bloques 16gicos con la asesoria de su profe-
sor(a) y realice la actividad que se indica en el anexo; ésta le ayudara a comprender
algunos de los conceptos vistos hasta el momento y como introduccién a algunas reglas
que se analizan en el siguiente apartado.
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2.3. Sistema Formal

Con base en las nociones basicas que se analizaron en la seccidén anterior: Proposiciones,
conectores, valores de verdad, tablas de verdad, tautologias, contradicciones e indetermi-
naciones, se hara ahora una introduccion al campo de la formalizacion desde la logica,
iniciando para ello con la construccion de un lenguaje formal para la loégica proposicional;
luego, determinando un mecanismo deductivo para este lenguaje y asi obtener un “sistema
formal para la logica proposicional”; lo propio se hara con la légica cuantificacional o 16g-
ica de enunciados. La construcciéon se hara siguiendo una via similar a la propuesta por
Bourbaki (ver [5]) y Restrepo (ver [14])

2.3.1. Alfabeto

1. El conjunto P contiene las proposiciones simples, las cuales se denotan con letras
mayusculas latinas, lo que se puede escribir como P = {P,Q, R, S,T, ...}, en forma
de subindices se escribe P = {Py, Py, P3,...}

2. El conjunto O denota los operadores a utilizar, el cual se escribe como O = {V, ~}

3. Los signos auxiliares estdn constituidos por los paréntesis que abren y cierran, se

escribe A = {(,)}

2.3.2. Reglas de Formacion

1. Todo elemento de P es una formula bien formada (f.b.f.).

2. Si P es una formula bien formada entonces ~ P es una féormula bien formada también.
3. Si P, @ son f.b.f. entonces PV @ es una f.b.f.
4

. Solo seran f.b.f. las cadenas que se generan al aplicar las reglas 1, 2 y 3.

En cuanto al alfabeto hay que decir que el conjunto O no es de conectores, ya que la funciéon
de la negacion ~ es cambiar el valor de verdad de las proposiciones simples. Algunas f.b.f que
se deducen a partir de las reglas de formacion son ~ P, ~ PVQ, ~ PV ~ Q, ~ (~ PV ~ Q)
donde P, @ son proposiciones (P, Q € P). Sin embargo P A Q, P — @, P < @ no son f.b.f
ya que los conectores A, —, < no hace parte del alfabeto, es por ello que se presentan las
siguientes definiciones para que asi la conjuncioén, el condicional y el bicondicional tengan
sentido en el sistema.

2.3.3. Definiciones

Sean P, @) formulas bien formadas, a continuaciéon se definen la conjuncion, el condicional
y el bicondicional en términos del conjunto O de operadores.
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Definicion 2.1. Conjuncion Si P, (Q son proposiciones entonces la conjuncion P N Q
equivale a ~ (~ PV ~ Q).

Definicion 2.2. Condicional Si P, (Q son proposiciones entonces P — @ equivale a
~PVQ.

Definicién 2.3. Bicondicional Si P, (Q son proposiciones entonces P < @ equivale a

(P—=Q)N(@Q—P)

Asi la proposicion P A @ es una f.b.f ya que ~ (~ PV ~ @) es una f.b.f. Con base en estas
definiciones se sigue que ~ P — @ es equivalente a ~ (~ P) V @, mientras que ~ PA ~ Q
equivale a ~ (~ (~ P)V ~ (~ Q)).

2.3.4. Mecanismo Deductivo
2.3.4.1. Axiomas

Los axiomas que se definen a continuacién son el punto de partida para la construccién de
los teoremas de la légica proposicional, los cuales se asumen como enunciados verdaderos,
los que a su vez poseen la estructura de tautologia. La palabra idempotencia hace alusién
a que al realizar varias veces una operacion sobre un mismo elemento se obtiene el mismo
elemento; mientras que la conmutatividad indica que que el resultado es independiente del
orden en que se realicen las operaciones.

Axioma 2.1. Idempotencia Sea P una proposicion entonces PNV P — P es una proposi-
cion verdadera.

Axioma 2.2. Adjuncion Sean P, Q proposiciones entonces P — PV Q) es una proposi-
cion verdadera.

Axioma 2.3. Conmutativa Sean P, () proposiciones entonces PV Q — Q V P es una
proposicion verdadera.

Axioma 2.4. Adicion a la implicacion Sean P, () proposiciones entonces
(P—-Q)— (RVP—RVQ)

es una proposicion verdadera.
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El axioma de idempotencia indica que al tener una disyuncién de una proposicién P con
si misma entonces se puede concluir solo la proposicion simple P, por lo que la proposi-
cion ~ PV ~ P —~ P es verdadera a raiz de este axioma, si se tiene la disjunciéon
~ (~ P)V ~ (~ P) ;Qué se puede concluir?. El axioma de adjuncién indica que dada una
proposicién P entonces se le puede adjuntar o anexar otra proposicion @) siempre y cuando
se haya uso del conector V y que esta se haga al lado derecho, inclusive se puede adjuntar
la misma proposiciéon P o su negacion, es decir, P — PV P o P — PV ~ P.

El axioma de conmutatividad respecto de la disjunciéon implica que el orden de la proposiciéon
PV (@ puede cambiar y no alterar la estructura logica de la proposicion PV @, asi ~ PVQ —
@ ~~ P. El axioma de adicién a la implicacién indica que al tener un condicional P — @
se puede adjuntar al antecedente y al consecuente otra proposicion R al lado izquierdo de
cada uno, dicha proposicion R puede ser incluso P o ) o sus negaciones, es por esto que
(P—-Q)— ((~PVP)—(~PVQ))) que en términos de la definicion de condicional se
escribe (P — Q) — ((P — P) — (P — Q)).

2.3.4.2. Reglas de Inferencia

En la tercer regla, la expresion Modus ponendo ponens es una locucion latina que significa
“el modo de afirma afirmando”.

1. Todo axioma es verdadero y puede figurar en cualquier paso de una deducciéon o
demostracion.

2. Toda proposicién obtenida por la aplicacién de un axioma es verdadera y puede figurar
en cualquier paso de una deduccién.

3. Modus Ponendo Ponens Si P — () es una proposiciéon verdadera y P es una
proposiciéon verdadera, entonces () es una proposicion verdadera. Esquematicamente,
esta regla se puede escribir asi

P — @Q
P
Q

4. Sustituciéon Si P <+ (Q entonces se puede sustituir P por Q o Q por P en cualquier
parte de una deduccién o demostracion.

2.3.5. Teoremas

Para deducir cada uno de los teoremas de la teoria que se va ha construir no existe un al-
goritmo, una estrategia o camino tinico, puesto que la deduccién es un acto creativo donde
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se ponen en juego todas las herramientas que se tienen y la imaginacién misma. Esas her-
ramientas de las que se estéd hablando son las definiciones, axiomas, reglas de inferencia y
los teoremas demostrados con anterioridad.

Para construir una deduccién de un teorema se puede hacer en forma de texto, también
llamada prosa o por medio de una estrategia llamada afirmacién - Razén. En el primer
caso, la demostracion se escribe como una narracién en la que a través de las palabras se
va hilando el conjunto de argumentos que llevaran a probar la verdad de la proposiciéon a
demostrar. En el segundo caso, se hace una lista de las deducciones y se escribe en frente
la justificacion o razon de lo que se va efectuando, a través de la utilizacion de los axiomas,
definiciones, reglas de inferencia o teoremas ya demostrados. Cabe resaltar que los teoremas
son utiles en cuanto al contenido del mismo, por su estructura, y no ligado al uso de las
letras P,Q, R, S.

Cada una de las definiciones, reglas de inferencias, axiomas o teoremas que se utilizan dentro
de un sistema deben ser proposiciones que generen tautologias, se hace a continuaciéon la
verificacion para la definicién de condicional, la cual se escribe en forma de bicondicional
como (P — Q) < (~ PVQ), como son dos proposiciones entonces hay cuatro posibilidades
logicas y de alli que

Pl=lef—]~PlviQ]
vivIivv]F [v]v
V|F|F|V| F|F|F
Flv|vI|v] Vv vV
FIVIF|V|V |V|F

Lo que genera una tautologia. Se presentan a continuaciéon 17 teoremas con su respectiva
demostracion (alternando entre prosa y afirmacion razén) que seran de utilidad en el estu-
dio de las inferencias y que reviste una importancia historica y conceptual en otras ramas
de las matematicas, no diciendo con esto que sean los tinicos teoremas existentes sino los
de mayor relevancia para el trabajo. Cada uno tiene un nombre que seréd utilizado para la
justificacion de los teoremas posteriores.

Teorema 2.1. Transitividad o Silogismo Si P — Q y Q — R son proposiciones ver-
daderas entonces P — R es una proposicion verdadera. En forma esquemdtica se escribe
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Demostracion |Afirmacion-Razon|

1. P—Q ... Hipotesis

2.0 - R ... Hipotesis

3.~PVQ ... Definicién de condicional (definicién 2.2) en 1
4. (Q - R)— (~PVQ@ —~PVR) ... Adicion a la implicacion (axioma 2.4) en 2

5. ~PVQ—~PVR ... Modus ponendo ponens entre 2 y 4
6.~PVR ... Modus ponendo ponens entre 3 y 5
7.P—R ... Definicién de condicional en 6

Como se menciond previamente, cada uno de los teoremas de la l6gica proposicional son
proposiciones tautologicas, comprobemos que el teorema de transitividad o silogismo induce
una tautologia, dicho teorema se escribe como [(P — Q) A (Q — R)] — (P — R), donde
estan implicadas tres proposiciones y por tanto 8 posibilidades logicas, resultando

Pl=fo[rle|=[R]=]P[~]R]

VIVIVIVIVIVIV|IV]VIV|V
VIVIVIFIV|F|F|V|V|F|F
VIF|IF|IFIF|V|V|V|V|IV |V
VIF|IF|IFIF|V|F|V|V|F|F
FIVIV|IVIV|VIV|V|F|V |V
FIV|VIF|V|IF|F|V|F|V|F
FIV|IF|V|F|V|V|V|F |V ]V
F/\V|F|V|F/V|F|V|F|V|F

Con lo que se concluye que el teorema de transitividad es una tautologia. La propiedad
transitiva no es exclusiva del contexto de las proposiciones, desde la geometria euclidiana
sabemos que si dos rectas py ¢ (p || ¢) son paralelas y ¢ es también paralela a otra recta r
(q || ) entonces p y r son paralelas también (p || ) propiedad que ilustra una transitividad
respecto del paralelismo. Las relaciones de semejanza y congruencia de poligonos son otros
ejemplos de relaciones transitivas en geometria. A continuacion se demuestra la propiedad
del medio excluido formalizada por Aristoteles (en latin “principium tertium exclusum”)

Teorema 2.2. Medio Ezxcluido Si P es una proposicion entonces

1. P — P es una proposicion verdadera.
2. ~ PV P es una proposicion verdadera.

3. PV ~ P es una proposicion verdadera.
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Demostracion |[Prosa|

Debido a que P es una proposicién entonces por el axioma de adjuncion P — PV P (1)
es una proposicion verdadera. Ahora, por el axioma de idempotencia resulta el condicional
PV P — P (2); haciendo uso del teorema de transitividad 2.1 entre las implicaciones (1)
y (2) se obtiene que P — P es una proposicion verdadera y asi el primer literal queda
demostrado. Ya que esté concluida la veracidad de P — P, se hace uso de la definicién
de condicional 2.2 con lo que ~ P V P es una proposicién verdadera y el literal 2 esta
demostrado. Ahora bien, ya que ~ PV P — PV ~ P (3) por el axioma de conmutatividad
y ~ PV P (4) es verdadero entonces aplicando un modus ponendo ponens entre (3) y (4)
se logra que PV ~ P es una proposicién verdadera.

El teorema del medio excluido 2.2 especificamente en el hecho que PV ~ P expresa un prin-
cipio de dicotomia, es decir, que alguna de las dos proposiciones P o ~ P son verdaderas
pero no las dos al mismo tiempo debido a que PA ~ P en si es una contradiccién como se
mostré en el ejemplo 2.16 a través de las tablas de verdad.

Teorema 2.3. Doble Negacion Sea P una proposicion entonces

1. P —~ (~ P) es una proposicion verdadera.

2. ~ (~ P) — P es una proposicion verdadera.

Demostracion [Afirmacion-razon|

1.~ PV~ (~P) ... Medio excluido (teorema 2.2)

2. P -~ (~P) ... Definicion de condicional en 1

3.~ (~P)Vr~(~(~P)) ... Medio excluido

4. ~ P —~ (~ (~ P)) ... Definicién de condicional en 3

5. PV~ P — PV~ (~(~P)) ... Adicion a la implicacion en 4

6. PV ~ P ... Medio excluido

7. PV ~ (~ (~P)) .. Modus ponendo ponens entre 5 y 6
8. PV~ (~(~P)) =~ (~(~P)VP ... Axioma de conmutatividad

9.~ (~(~P)VP ...Modus ponendo ponens entre 7 y 8
10. ~(~P)— P ... Definicién de condicional en 9

Un simil de la propiedad de doble negaciéon se encuentra en las propiedades de los ntimeros
enteros conocida como ley de signos, donde —(—m) = m lo cual indica que el opuesto del
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opuesto de un ntmero m es el mismo nimero. El siguiente teorema llamado de conjuncion
se desprende de la tabla de verdad del conector que ella su nombre, donde P A Q) es ver-
dadera siempre que Py () sean verdaderas también.

Teorema 2.4. Conguncion Si P y Q) son proposiciones verdaderas entonces PN\ Q es una
proposicion verdadera. En forma esquemdtica

P

Q@
PAQ

Demostracion |[Prosa|

Las hipotesis en este caso es que tanto P como () son verdaderas. Por el teorema de doble
negacion se tiene que P —~ (~ P) es una proposicion verdadera que por modus ponendo
ponens con P resulta que ~ (~ P) es una proposicion verdadera. Con base en el axioma
de adjuncién se sigue que ~ (~ P) —~ (~ P)V ~ @ y por modus ponendo ponens con
~ (~ P) se obtiene que ~ (~ P)V ~ @ es una proposicion verdadera, que por la definicion
de condicional se escribe como ~ P —~ @ (1).

Si al condicional obtenido en (1) se aplica el axioma de adicién a la implicacion (respecto de
la proposicion ~ @) se logra ~ QV ~ P —~ QV ~ @ (2); como ~ QV ~ Q —~ Q (3) esto
por el axioma de idempotencia, entonces al aplicar la transitividad entre los condicionales
dados en (2) y (3) resulta ~ QV ~ P —~ @ (4). Debido a que ~ PV ~ Q —~ QV ~ P
esto por el axioma de conmutatividad entonces por el teorema de transitividad ~ PV ~
Q —~ Q, que al aplicar la definicion de condicional se tiene ~ (~ PV ~ Q)V ~ Q (5).

La expresion (5) se puede escribir como ~ QV ~ (~ PV ~ @) que por la definicion de
condicional @ —~ (~ PV ~ @), al ser ) una proposiciéon verdadera entonces por un
modus ponendo ponens se tiene que ~ (~ PV ~ () es una proposicion verdadera, con
base en la definicién de conjuncién 2.1 se concluye que P A @ es una proposiciéon verdadera,
siempre que Py @) sean verdaderas. [

A partir del teorema de conjuncion 2.4 es posible obtener teoremas que hayan uso del bi-
condicional, ya que de acuerdo con la definiciéon de este conector 2.3, P < @ equivale a
(P — Q) AN (Q — P) y asi hacer uso de la regla de inferencia de sustitucion. La primer
consecuencia es que el teorema de doble negacién 2.3 se puede escribir en términos de un
bicondicional, de alli el nombre que recibe el siguiente teorema.

Teorema 2.5. Doble Negacion-FEquivalencia Sea P una proposicion entonces

P <~ (~P)
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es una proposicion verdadera.

Demostracion |Afirmacion-razon|

1. P —~ (~ P) ... Teorema doble negaciéon 2.3
~(~P)—P ... Teorema doble negacion 2.3
[P —n~ (~ P)]A [~ (~P)— P] ...Conjunciéon (teorema 2.4) entre 1y 2
4. P <~ (~ P) ... Definicién de bicondicional (definicion 2.3) en 3

En la seccion anterior se dijo que, asociado al condicional P — @ esté el contrarreciproco
~ (Q —~ P, el cual tiene el mismo valor de verdad del condicional dado; en el siguiente
teorema se demuestra que no solo poseen los mismos valores de verdad sino que son ambas
proposiciones son equivalentes independientes de los valores de verdad de las proposiciones

PyQ.

Teorema 2.6. Contrarreciproco Sean P y Q) proposiciones entonces
(P— Q)< (~Q—~P)

es una proposicion verdadera.

Demostracion [Prosa|

Por el axioma de conmutatividad se tiene ~ PV Q — QV ~ P (1), puesto que @ es
equivalente a ~ (~ @) por el teorema de doble negacion 2.5, asi en (1)

~PVQ o~ (~QV ~ P

la anterior proposicion se escribe como (P — @) — (~ Q —~ P) (2) debido a la definicion
de condicional. Por un razonamiento analogo QQV ~ P —~ PV @) es una proposiciéon
verdadera por el axioma de conmutatividad y esto conduce al condicional (~ Q —~ P) —
(P — @) (3) que al aplicar el teorema de conjuncion entre las proposicion (2) y (3) se
escribe

(P=Q) = (~Q@—=>~P) N (~Q—=>~P)—(P—-Q)

Que segtn la definicion del bicondicional 2.3 se concluye (P — Q) < (~ Q —~ P). [

El teorema de simplificaciéon que se presenta a continuacién indica que si una conjuncién
P A Q es verdadera entonces tanto P como () son verdaderas, es decir, se pueden utilizar
de forma independientes las proposiciones simples P o ( de acuerdo con lo que se necesite.
Dicho teorema se basa en la tabla de verdad de la conjuncioén.
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Teorema 2.7. Simplificacion Si P A\ Q es una proposicion verdadera entonces P es una
proposicion verdadera y ) es una proposicion verdadera. Esquemdticamente se escribe

P AN Q
—
Q
Demostracion [Afirmacion-razon|
1. PANQ ... Hipotesis
2.~P— (~PV~Q) ... Axioma de adjuncion
3.~ (~PV~Q)—~(~P) ... Contrarreciproco (teorema 2.6) en 2
4. PNQ —~ (~ P) ... Definicién conjuncion (definicion 2.1) en 3
5.~ (~ P) ... Modus ponendo ponens entre 1 y 4
6. P ... Doble negacién-equivalencia en 5
7.~Q — (~QV~P) ... Axioma de adjuncion
8. (~QV~P)—(~PV~Q) ... Axioma de conmutatividad
9. ~Q — (~ PV ~Q) ... Transitividad entre 7 y 8
10. ~ (~ PV ~ Q) =~ (~ Q) ... Contrarreciproco en 9
11. PANQ —~ (~ Q) ... Definicién conjuncion en 10
12. ~ (~ Q) ... Modus ponendo ponens entre 1 y 11
13. @ ... Doble negacién-equivalencia en 12

Advertencia 2.1. Tener especial atencion con el teorema de simplificacion, ya que re-
quiere que el conector principal sea A, asi en la proposicion ~ P N\ @ se puede aplicar
dicho teorema y obtener cualquiera de las dos proposiciones ~ P o Q, sin embargo en una
proposicion compuesta de la forma ~ (P A Q) no es posible hacer uso de la simplificacion
para obtener ~ P, esto se debe a que la negacion de una conjuncion es en st una disyuncion
(~ (PAQ) < (~ PV ~Q)) como se demostrard en el teorema 2.15 conocido como Ley
D’Morgan.

El axioma de conmutatividad 2.3 indica que el conector V permite intercambiar el orden
de las proposiciones simples que le componen sin cambiar el valor de verdad y la estructura
de la disyunciéon PV @. En el teorema siguiente se demuestra que este axioma presenta la
estructura de un bicondicional y que ademés el conector A también satisface la propiedad
conmutativa.

Teorema 2.8. Conmutatividad Sean P, () proposiciones entonces
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1. PVQ—QVP

2. PAQ— QAP

Demostracion [Prosa|

Por medio del axioma de conmutatividad se tiene que PVQ —- QV Py QV P — PVQ,
que por el teorema de conjuncién 2.4 se obtiene

PVvQ—-QVP A QVP—PVQ

Con base en la definicién de bicondicional se sigue que PV Q) < QV P con esto se concluye la
demostracion del literal 1. Por el axioma de conmutatividad ~ QV ~ P —~ PV ~ @, que
al aplicar el teorema del contrarreciproco (teorema ver 2.6) se tiene ~ (~ PV ~ Q) —~ (~
QV ~ P)y asi por la definicién de conjuncion resulta P A Q — Q A P (1); un razonamiento
analogo conduce a Q A P — P A @, que por conjuncion con (1) se tiene

PANQ—-QAP A QNP —PAQ

De donde se concluye que PAQ <« QA P. ¢

El bicondicional también es un operador conmutativo como se demostrara en el teorema
2.9, sin embargo el condicional no lo es, remitirse al ejemplo 2.17. El teorema siguiente se
llama de equivalencia haciendo alusion a las propiedades que satisface el bicondicional, la
primera es que toda proposicién es equivalente a si misma, en el caso en que P y () sean
equivalentes (P < @) entonces el reciproco y contrarreciproco también son equivalentes.
En los ejercicios propuestos se pide demostrar que el bicondicional también satisface la
propiedad transitiva, en simil con en el teorema 2.1 en el que el condicional es transitivo.

Teorema 2.9. Equivalencia Sean P, () proposiciones entonces

1. Medio Ezxcluido P «— P
2. Reciproco (P < Q) < (Q < P)

3. Contrarreciproco (P <« Q) < (~ Q <~ P)

Demostracion |[Afirmacion-razon|



2.3 Sistema Formal 47

1.P—P ... Medio excluido (teorema ver 2.2)
2.P— P ... Medio excluido
3. (P—P)N(P— P) ... Conjuncioén entre 1 y 2
4. P~ P
... Definicién de bicondicional en 3
5 (P-QANQ—P)—(Q—PANP—Q) ... Teorema de conmutatividad respecto de A
6. (P—Q)«—(Q<P) ... Definicién de bicondicional en 5

7.(P—-QNQ — P)«— (~Q —~ PN~ P —~ Q) ...Contrarreciproco (teorema 2.6)
8. (P Q)< (~Q <~ P) ... Definicion de bicondicional en 7

En el axioma 2.1 se indicé que el conector V satisface la propiedad de idempotencia respecto
de un condicional. En el teorema 2.10 se demostrara que esta propiedad también la satisface
el conector A y que ademés son expresiones equivalentes.

Teorema 2.10. Idempotencia Sea P una proposicion entonces

1. PVP+— P
2. P\NP«< P

Demostracion [Prosa|

Por el axioma de idempotencia PV P — P (1), mientras que por el axioma de idempotencia
P — PV P (2), aplicando una conjuncion entre las implicaciones (1) y (2) se tiene

rPvP—-P AN P—PVP

En cuyo caso PV P < P por la definicién de bicondicional y asi se verifica el literal 1.
Si se hace uso de lo que se acaba de demostrar respecto de la proposicién ~ P resulta
~ PV ~ P <~ P (3); como el contrarreciproco también se satisface con el bicondicional
(literal 3 del teorema de equivalencia 2.9), entonces en (3) ~ (~ P) <>~ (~ PV ~ P), por
la doble negacion y la definiciéon de conjuncion P < P A P, al utilizar de nuevo el teorema
de equivalencia literal 2 se concluye que PA P «— P. [

A partir del axioma 2.4 de la adicién a la implicacion es posible demostrar el teorema 2.11 el
cual se denomina adicién entre implicaciones ya que hay dos condicionales a diferencia del
axioma 2.4 en el cual hay solo un condicional. En este teorema 2.11 se hace una disyuncién
entre los antecedentes y al mismo tiempo entre los consecuentes. Igual situaciéon ocurre con
la conjuncioén.
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Teorema 2.11. Adicion entre implicaciones Si P — QQ y R — S son proposiciones

verdaderas entonces

1. PVR — QVS es una proposicion verdadera

2. PANR— QNS es una proposicion verdadera

Demostracion [Afirmacion-razon|

. P—Q
.R— S
.RVP—RVQ
.PVR—-QVR
.QVR—-QVS
.PVR—-QVS

S O = W N =

7.~Q —~P

8. ~S58 —~R

9. (~QV~S)— (~PV~R)

10. ~ (~ PV ~ R) =~ (~QV ~ S)
1. PAR—- QNS

P — @
R — S

PVR — QVS

P — @
R — S

PAR — QNS

.. Hipotesis

.. Hipotesis

.. Adicién a la implicacion en 1

.. Conmutativa (Teorema 2.8) en 3
.. Adici6én a la implicaciéon en 2

.. Transitividad entre 4 y 5

.. Contrarreciproco en 1
.. Contrarreciproco en 2
.. Literal 1 de este teorema entre 7 y 8
.. Contrarreciproco en 9

.. Definicion de conjuncion en 10

Teorema 2.12. Método de Casos Si P — QQ, R — S y PV R son proposiciones ver-
daderas entonces QV S es una proposicion verdadera. Esquemdticamente

Qv = v

N

N
V
V

QN YO
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Demostracion |[Prosa|

Por hipotesis se tienen las implicaciones P — @ y R — S, que al aplicar el teorema de
adicion entre implicaciones 2.11 resulta el condicional PV R — QV S;(1), ya que PV R (2)
es la otra hipdtesis entonces por el modus ponendo ponens entre (1) y (2) se concluye que
@ V S es una proposicion verdadera.

Para la utilizaciéon del método de casos se requieren dos condicionales y una disyuncién
compuesta por los antecedentes de los condicionales. Sin embargo el método de casos se
puede reformular también si la tercer premisa se sustituye por P A R para concluir Q A S.
El teorema 2.13 recibe el nombre ya que se niega una de las proposiciones (Tolendo) y co-
mo conclusion se afirma la otra proposicion (Ponens) siempre y cuando haya una disyuncion.

Teorema 2.13. Modus Tolendo Ponens Sean P, () proposiciones

1. Si PVQ y~ @Q son proposiciones verdaderas entonces P es una proposicion verdadera.

P Vv Q
_~Q
P

2. Si PVQ y~ P son proposiciones verdaderas entonces Q) es una proposicion verdadera.

P Vv @
~ P
Q

Demostracion [Afirmacion-razon|

1.PVQ ... Hipotesis

2. ~Q ... Hipotesis

3.QVP ... Conmutativa en 1

4. ~(~Q)VP ... Doble negacion-equivalencia en 3
5. ~Q — P ... Definicién de condicional en 4

6. P ... Modus ponendo ponens entre 2 y 5
7. PVQ ... Hipotesis

8. ~P ... Hipotesis

9. ~(~P)VQ ... Doble negacion en 7

10. ~ P — @ ... Definicion de condicional en 9

11. Q ... Modus ponendo ponens entre 8 y 10
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Advertencia 2.2. Si tenemos como hipdtesis que (PVQ)AR y ~ Q entonces no es posible
aplicar (por lo menos de forma directa) el modus tolendo ponens para concluir la proposicion
P A R, esto se debe a que operador principal de la proposicion compuesta (PV Q) A R no
es V sino A, la conclusion resulta al aplicar la secuencia

1. (PVQ)ANR ... Hipotesis

2. ~Q ... Hipotesis

3. PVQ ... Simplificacion en 1

4. P ... Modus tolendo ponens entre 2 y 8
5. R ...Simplificacion en 1

6. P\NR ... Conguncion entre 4 y 5

Y ast se logra la conclusion pedida pero no se hace uso del modus tolendo ponens de forma
directa, se requiere otra serie de teoremas.

Por su parte el teorema del modus tolendo tolens (método de negar negando) indica que
si se tiene un condicional y se presenta la negaciéon del consecuente entonces se concluye la
negacion del antecedente.

Teorema 2.14. Modus Tolendo Tolens Si P — Q y ~ ) son proposiciones verdaderas
entonces ~ P es una proposicion verdadera.

P - Q@
_~Q
~ P

Demostracion |[Prosa|

Por hipotesis P — @, al aplicar el teorema del contrarreciproco resulta ~ Q —~ P, ya
que ~ @ es hipotesis entonces por un modus ponendo ponens se concluye que ~ P es una
proposicién verdadera.

Uno de los teoremas centrales de la l6gica proposicional se denomina Ley D’Morgan (por el
matematico Augustus De Morgan) el cual caracteriza la negacion de las proposiciones com-
puestas, en el caso de “la negacion de la disyuncién se obtiene la conjuncién de las negacion™;
de forma similar se obtiene la negacion de una conjuncién. La negacion del bicondicional
esta propuesta dentro de los ejercicios, para el que ~ (P < @) equivale a cualquiera de las
proposiciones ~ P < Q) o P <>~ @, es decir, para negar un bicondicional se niega solo una
de las proposiciones preservando la equivalencia.
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Teorema 2.15. Ley de D’Morgan Sean P, (Q proposiciones entonces

1. ~(PANQ) < (~PV~Q)
2. ~(PVQ) < (~PAN~Q)
3. ~(P—Q)«— (P\N~Q)

Demostracion |[Afirmacion-razon|

LPANQ—QAP ... Teorema de equivalencia

2. PNQ <~ (~PV~Q) ... Definicién de conjuncién en 1

3.~ [~ (~PV~Q)] =~ (PANQ) ... Teorema de equivalencia en 2 (contrarreciproco)
4. (~ PV ~Q) <~ (PANQ) ... Doble negacién en 3

5.~ (PANQ) <« (~PV~Q) ... Teorema de equivalencia en 4 (reciproco)

6. (~ PN~ Q) <~ [~ (~P)V~(~Q)] ... Definicion de conjunciéon

7. (~ PN~ Q) <~ (PVQ) ... Doble negacién en 6

8. ~(PVQ) < (~PAN~Q) ... Teorema de equivalencia en 7 (reciproco)

9. (P—-Q) < (~PVQ) ... Definicién de condicional

10. ~ (~ PV Q) -~ (P—Q) ... Teorema de equivalencia en 9 (contrarreciproco)
11. [~ (~ P)A ~ Q] <~ (P — Q) ... Literal 2 de este teorema en 10

12. (PA~ Q) <~ (P — Q) ... Doble negacion en 11

13. ~ (P - Q) < (PN~ Q) ... Teorema de equivalencia en 12 (reciproco)

Ejemplo 2.22. La proposicion “Si x # 0 entonces x > 0 o x < 0”7 se puede escribir como
una proposicion compuesta de la forma P — QV R, ast? por la ley D’Morgan, en la negacion
~ (P — QV R) resulta la proposicion equivalente P\ ~ (Q V R) que al aplicar de nuevo
esta ley resulta P A (~ QA ~ R), en lenguaje natural la negacion de la proposicion dada es

“cE£0yxF0yxL£07

Dentro de las propiedades de los nimeros reales se encuentra la propiedad asociativa, la
cual indica que dados tres nameros se tienen las igualdad (a +b) +¢c =a+ (b+c¢)y
a-(b-c) = (a-b)-c, tal propiedad se presenta también respecto de las proposiciones y
de los conectores V y A como se enuncia a continuacién. El bicondicional es asociativo,
es decir, [P < (Q < R)] < [(P < Q) < R], mientras que el condicional no lo es, esto
se puede justificar a través de la tabla de verdad, donde el resultado es una indeterminacion.
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Teorema 2.16. Asociativa Sean P, ), R proposiciones entonces

1. (PVQ)VR < PV(QVR)
2. (PAQ)AR < PA(QAR)

Demostracion [Prosa|

Por el axioma de adjuncién @ — @ V R, que por el axioma de adiciéon a la implicacion se
escribe PVQ — PV(QVR) (1). Asuvez R — RVQ que por la conmutatividad R — QV R,
para lo que PVR — PV (QV R) (2). Como R — RV P — PV R que al aplicar la transi-
tividad con el condicional (2) resulta R — PV (QV R) (3); por el teorema de adicién entre
implicaciones en este caso entre (1) y (3) se obtiene (PVQ)VR — [PV(QVR)|V[PV(QVR)]
que por el teorema de idempotencia equivale a (PV Q)V R — PV (QV R) (4).

Con base en el axioma de adjunciéon resulta que P — PV @, como R — R por el medio
excluido entonces al hacer uso de la adicion entre implicaciones resulta PV R — (PV Q) V
R (5). De igual manera @ — Q V P — PV @ que al adicionarle la proposicién R a ambos
lados se tiene QV R — (PVQ)V R (6). Debido a que P — PV R entonces por transitividad
con la expresion (5) resulta P — (P V @) V R que al aplicar la adicion entre implicacion
con (6) y la propiedad de idempotencia se concluye que PV (QV R) — (PV Q) V R (7).
Aplicando el teorema de conjuncion entre (4) y (7)

(PVQ)VR—PV(QVR]APV(QVR)— (PVQ)VR]

Y asi se concluye la propiedad asociativa para la disyuncion PV (Q V R) < (PV Q) V R.
Para demostrar el literal 2 se sustituye P, () y R por sus respectivas negaciones ~ P, ~ Q) y
~ R para tener (~ PV ~ Q)V ~ R <>~ PV (~ QV ~ R); debido al teorema de equivalencia
respecto del contrarreciproco se obtiene

~ [~ PV (~QV~R) o [(~ PV~ QV ~ R
Por medio de la ley de D’Morgan se sigue que

~ (~ P)A~ (~ QU ~ R) o (~ PV ~ QA ~ (~ R)
Una doble negaciéon y de nuevo otra ley D’Morgan

PA~(~QV ~R) <~ (~PV~Q)AR

Por la definiciéon de conjuncion P A (Q A R) < (P A Q) A R, y el teorema de equivalencia
se concluye la propiedad asociativa para la conjuncion (PAQ) AR < PA(QAR). 0O
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Advertencia 2.3. Dado el conjunto de hipdtesis (P — Q)V R y ~ Q se puede deducir la
proposicion ~ PV R, pero no haciendo uso del modus tolendo tolens entre las proposiciones
P — Q y~ Q, esto se debe a que el conector que prima en la proposicion (P — Q) V R
no es el condicional sino la disyuncion. En la siguiente secuencia se ilustra el como llegar
a esta conclusion

1.(P—-Q)VR ... Hipotesis

2. ~Q ... Hipotesis

3. (~PVQ)VR ... Definicion de condicional en 1
4.~PV(QVR) ... Asociativa en 3

5. ~PV(RVQ) ... Conmutativa en 4

6. (~PVR)VQ ... Asociativa en 5

7. ~PVR ... Modus tolendo ponens entre 2 y 6

En la expresion 5- (34 4) la operacion que debe efectuarse en primer momento es la adicion
y luego la multiplicacién para obtener 35 como resultado; otro procedimiento admisibles es
resolver 5-3+ 5 -4 donde se intercambia el orden para hacer primero las multiplicaciones y
luego la adicion, esto se escribe como 5-(344) = 5-3+5-4 y recibe el nombre de propiedad
distributiva. Este planteamiento se generaliza a la proposiciones con base en los conectores
V, ANy —.

Teorema 2.17. Distributiva Sean P, Q, R proposiciones entonces

1. Conguncion respecto disjuncion: PN (QV R) < (PNQ)V (PAR)
2. Disjuncion respecto conjuncion: PV (Q ANR) — (PV Q) A (PV R)
3. Condicional respecto conjuncion: [P — (Q AR)] < (P — Q) A (P — R)

4. Condicional respecto disjuncion: [P — (QV R)] < (P — Q) V (P — R)

Demostracion [Prosa|

Por la propiedad del medio excluido y del axioma de adjuncién se tienen las implicaciones
P — Py@ — QV R, que por la adicion entre implicaciones P A Q — P A (Q V R) (1).
Nuevamente se utiliza el axioma de adjunciéon R — RV @, donde se escribe R — QV Ry
por la adicién entre implicaciones P A R — P A (Q V R) (2). Haciendo uso de la adicion
entre implicaciones para los condicionales (1) y (2) resulta

(PANQ)V(PAR)—[PAN(QVR)]VI[PA(QVR)]
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Que por la propiedad de idempotencia (2.10) se escribe (PAQ)V(PAR) — PA(QVR) (3).
La siguiente proposicién se justifica por el teorema de adiciéon entre implicaciones

(P =~ Q) A (P =~ R)] = [PAP =~ QA ~E|

Por la propiedad de idempotencia resulta [(P —~ Q) A (P —~ R)] — [P —~ QA ~ R], a
continuacion se define los condicionales para tener

[(~ PV ~Q)N(~PV~R)]—[P—~QAN~ R]

Cuyo contrarreciproco es ~ [P —~ QA ~ R| —~ [(~ PV ~ Q) A (~ PV ~ R)] haciendo
uso de la ley D’Morgan y de la definicién de conjuncién se escribe

[PA(~(~Q)V~(~R) = (PAQ)V(PAR)

Por doble negacion se tiene el condicional [P A (Q V R)] — (PAQ)V (P A R) (4); por
conjuncion entre (3) y (4) se tiene

{[PAQVR)]— (PAQV((PARIAN{(PAQ)V(PAR)— PA(QVR)}

Y la definicion de bicondicional concluye que P A (QV R) «— (P A Q) V (P A R). Para el
literal 2 se hace uso del literal 1 donde cada proposicién se cambia por la negacién de la
misma ~ PA(~ QV ~ R) «— (~ PA ~ Q)V(~ PA ~ R) por el teorema de equivalencia el
contrarreciproco es equivalente ~ [(~ PA ~ Q)V (~ PA ~ R)] «—~ [~ PA(~ QV ~ R)],
que por la propiedad de D’Morgan

~ (~ PA~ QA ~ (~ PA~ R) e~ (v PV ~ (~ QU ~ R)

De nuevo se aplica la propiedad de D’Morgan para lo que

[~ (v P)V ~ (~ QI A [~ (~ P)V ~ (~ R)] «—=~ (~ P)V(Q A R)

Por medio del teorema de doble negacion resulta que (PV Q) A (PV R) «—— PV (Q A R)
que por el teorema de equivalencia se concluye PV (Q A R) «—— (PV Q) A (P V R).

Por la definicion de condicional se tiene la equivalencia [P — (Q A R)] <>~ PV (Q A R),
donde es posible aplicar la distributiva de la disjuncién respecto de la conjuncién para tener
[P— (QAR)] < (~PVQ)A(~PVR)y asi por la definicion de condicional se concluye
[P = (Q@AR)] < (P—Q)A(P—R).

Por medio de la definicién del condicional y de la propiedad de idempotencia aplicado a la
proposicion ~ P se tiene [P — (QV R)] <>~ PV (QV R) < (~ PV ~ P)V (Q V R), ahora
bien, por los teorema de conmutatividad y asociatividad respecto de la disjuncién resulta

[P—(QVR)]<—~PV(~PVQ)VR
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HNPV(QVNP)\/R
o (~PVQ)V(~PVR)

Lo cual permite concluir que [P — (QV R)] < (P - Q)V (P — R). ¢

Advertencia 2.4. Consideremos las proposiciones (P — Q) — R y P, en este caso no es
posible hacer uso del modus ponendo ponens entre las dos hipdtesis para deducir @ — R,
ya que en el condicional (P — Q) — R el antecedente es P — Q el cual no sabemos si es
cierto. Veamos el siguiente razonamiento

1.(P—-Q)—R ... Hipotesis

2. P ... Hipotesis

3. ~(~PVQ)VR ... Definicion de condicional en 1

4. (PN~Q)VR ... Ley D’Morgan vy doble negacion en
3

5. (PVR)AN(~QVR) ...Distributiva en 4

6. ~QVR ... Stmplificacion en 5

7.Q— R ... Definicion de condicional en 6

Notese que la conclusion se obtiene sin hacer uso de que P es una proposicion verdadera,
lo que reafirma el hecho que no se puede aplicar el modus ponendo ponens bajo la situacion
planteada.

Ejemplo 2.23. Consideremos la proposicion compuesta PNV Q la cual representa una
disjuncion entre las proposiciones Py Q. A continuacion se escribird dicha proposicion
en términos solo de la conjuncion y la implicacion. Por la ley D’Morgan se tiene que
PV Q@ <~ (~ P\ ~ Q), lo cual garantiza que PV @Q quede escrita en términos de la
conjuncion. Ahora, para que se escriba por medio de un condicional se hace uso de la
definicion de condicional y de la doble negacion para tener PV Q <~ P — Q. El mismo
procedimiento puede hacerse para las proposiciones compuestas PN Q, P — Q y P < Q.
En la siguiente tabla se resumen estos resultados

‘ Proposicion H Disjuncion Conjuncion Condicional
PVvQ PvQ ~ (~ PN~ Q) ~P—-Q
PAQ ~(~ PV~ Q) PAQ ~(P—=~Q)
P—qQ ~PVvVQ ~ (PN~ Q) P—qQ
PoQ ||~[~v(~vPVQR)V~(~QVP) |~ (PA~QAN~(QAN~P)|~[(P—Q) =~ (Q— P)
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2.4.

Ejercicios

. Por medio de las tablas de verdad muestre que cada uno de los teoremas y axiomas

enunciados para la légica proposicional son tautologias.

. ;Cuéles de los teoremas de la logica proposicional son equivalencias (El conector es

un bicondicional)? ;Cuéles utilizan solo la implicacion?

. Para cada caso, enuncie un teorema, dada la interpretacion

Todo enunciado es condiciéon suficiente y necesaria para su doble negacién.

La negacion de la conjuncion de dos enunciados es condiciéon necesaria y suficiente
para la disyunciéon de sus negaciones.

Si una disyuncién es verdadera y una de sus componentes es falsa, entonces la
otra componente es verdadera.

En una disyuncién no importa el orden de sus componentes.

La conjuncién de dos formulas es condicion suficiente para cualquiera de las dos.

. Sean P:“m.c.m.(12,8) = 24”7 y Q:*m.c.d.(7,11) = 2” proposiciones simples. Determine

el valor de verdad de P y (). Para las proposiciones compuestas que se plantean a
continuacion halle el valor de verdad y la respectiva negacion (Ley D’Morgan 2.15)

a) P— Q b)~PAQ c)~PVQ
d) P—Q e)~(PAQ) f)(PvQ)— P

)
b)
)
a)
)
)

[&

f

. Niegue cada uno de los siguientes enunciados, determinando el valor de verdad

Si # = 3 entonces 2% — 3z = 0.

n es primo sii es divisible por n y por 1.

Si un tridngulo es equilatero entonces es isosceles.
m? —4m =0siim=00m=4.

Si un nimero es entero entonces es par o es impar.

Sip|lqyqLrentonces p L r.

6. Enuncie el teorema de casos para el conector A y haga la respectiva demostracion.

7. Demuestre que el condicional satisface las propiedades

a) Q
b) ~
¢) P
a)

— (P =Q)
P—(P—Q)
—(~P—=Q)
Si P— (@ entonces PAR— QAR
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8. En los métodos de demostracion se hara uso del siguiente resultado llamado el método
de casos

PvVvQ@ — R
(P—R) A (@—R)

9. Demuestre las siguientes propiedades

Hipétesis P—qQ P—qQ P—qQ

Tesis | (P—R) =[P — (QAR)] | (R—Q) — [(PVR) — Q||| (@Q—R) — (P — R)

10. Demuestre las equivalencias

a) [P=(Q—R)] < [PAQ— R
b) [P = (QV~R)] < [(RAP)— Q]
) [P=(QVR)]<[QV(P— R)

11. Suponga que P — (@) es una proposicion verdaderas, demuestre que P A R — @ es
una proposicion verdadera.

12. Demuestre la siguiente versiéon del método de casos
P — R

~P — R
R

13. Demuestre que el bicondicional satisface la propiedad transitiva

(P = Q)N Q< R)]— (P < R)

14. Haciendo uso del sistema formal de la l6gica proposicional escribir las proposiciones
compuestas de la primer columna en términos de los conectores que se especifican en
las columnas restantes

Proposicion H Disjuncion | Conjuncion | Condicional | Bicondicional
~(P~Q)
PV (QAR)

~(PAQ)

15. Demuestre el siguiente caso particular de adicién entre implicaciones
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P — @
P —- R
P —- QAR
16. El teorema de adicién entre implicaciones es verdadero con el bicondicional como se
enuncia a continuaciéon. Disene la demostracion
P < @
R « S
PVR < QVR
PAR < QAR
17. El siguiente teorema se conoce como cancelacion de la equivalencia, hacer la
demostraciéon
PAR < (@
R
P < Q
18. Con base en la cancelacion de la equivalencia (ejercicio anterior) y el teorema del
medio excluido demuestre
a) [(P—Q)— Q< (PVQ)
b) (PAQ)V (~PA~Q)] = (P Q)
19. Si P y @ son proposiciones equivalentes (P < @) y R es una proposicion. Demuestre
a) ~ P Y Q
b) ~ (P Q) = (~P Q)
¢) (PVR)« (QVR)
20. Del conjunto de proposiciones que se presentan a continuacién, indique cuales de ellas
son teoremas (tautologia) y demuestre la veracidad de los mismos.
a) [(P—Q)— 5]« [P—(Q—5)
b) [P — PAP]< [P« P]
c) ~(PANQ)—>~P
d) {[(PVQ)VRIA~Q}— (PVR)
21. ;Cumple el bicondicional la propiedad asociativa? En caso afirmativo demuestrelo.

(Hacer la tabla de verdad)
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2.5. Argumentacién, razonamiento e inferencia

En este seccién se vera como el sistema formal de la 16gica proposicional que se ha construi-
do ayudarad a determinar qué tipo de esquemas de inferencia o razonamientos aseguran la
validez de las conclusiones. Se puede decir, como Carlos Munoz Gutiérrez, que el razon-
amiento logico es un conjunto de afirmaciones, proposiciones o juicios que mantienen entre
si relaciones logicas, de forma que partiendo de algunos juicios dados llamados “premisas”, se
puede llegar deductivamente a un juicio que no se tenia y al que se denomina “conclusion”,
mediante la utilizacion de axiomas, definiciones y la aplicacién de reglas de inferencia y
teoremas; la obtencién de la conclusién, si se procede loégicamente, asegura la validez de la
misma, por la propia estructura logica de las proposiciones que componen las premisas.

Si se tiene como premisas las proposiciones: “Si me caigo entonces me golpeo” y “me cai-
g0’ ;Qué se puede concluir? Innegablemente, que “me golpeo”. Esta es una “inferencia” o
“razonamiento deductivo”, en la que si las premisas fueran verdaderas, también lo seria la
conclusion.

Ejemplo 2.24. Veamos otros ejemplos

a. Si llueve entonces se me seca la ropa y llueve. Luego, se me seca la ropa.

b. Si llueve entonces me mojo y me mojo. Luego, llueve.

El razonamiento a. parece falso, puesto que no ocurre en la cotidianidad que cuando llueva
se seque la ropa; por el contrario, el razonamiento b. parece verdadero, pues efectivamente
si me mojo puede ser porque llueva. Sin embargo, este anélisis responde a lo que se de-
nomina “verdad material”. La verdad material es un asunto de experiencia; podria ser que
efectivamente cuando llueva se nos seque la ropa, pero en este mundo ocurre lo contrario.
La verdad material es un asunto que investiga las ciencias empiricas o experimentales que
necesitan acudir a la experiencia para determinar la verdad de sus teorias. La logica no
se ocupa de este tipo de verdad, sino de la “validez” o “verdad formal”. En este sentido,
prescience del contenido de las proposiciones para ocuparse tnicamente de la forma logica
de las mismas.

Ejemplo 2.25. Se puede simbolizar los razonamientos presentados en el ejemplo 2.2 ha-
ciendo P:“llueve”, Q:“se me seca la ropa”, R:“me mojo” por lo que el razonamiento expuesto
en el literal a. se escribe como
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Se ve como este razonamiento tiene la forma de la regla de inferencia del Modus Ponendo
Ponens, luego este esquema de inferencia es vdlido. Por otro lado, si se construye la tabla
de verdad asociada a este razonamiento encontraremos que se trata de una tautologia. Para
el razonamiento b. del ejemplo 2.24 se puede escribir de forma esquemdtica como

P — R
R
P

Este razonamiento mo coincide con ninguna regla de inferencia o teorema, y tampoco se
puede deducir la conclusion a partir de las premisas mediante la aplicacion de varias reglas
de inferencia, teoremas o la utilizacion de ariomas y definiciones. Si se construye la tabla
de verdad correspondiente al esquema anterior [(P — R) A R] — P el resultado es una
indeterminacion, es decir, existen casos para los cuales es falso el razonamiento y casos
para los cuales es verdadero.

En conclusion, el sistema formal de la logica proposicional que se ha construido da las
herramientas para saber si un razonamiento es o no “valido”; es decir, si la conclusiéon se
puede deducir loégicamente de las premisas o no. En este mismo sentido y haciendo una
adaptacion a la propuesta de Toulman (1979), todo argumento debe tener los siguientes
elementos:

1. Tesis: Es la conclusion a la que se quiere llegar con la argumentacion.
2. Fundamento: Base o premisa sobre la que se apoya la tesis.

3. Garantes: Enunciados que justifican el paso o conexion entre el fundamento y la tesis
(pueden ser leyes de la naturaleza, principios legales, formulas de ingenieria, lugares
comunes, leyes logicas, segin el caso).

4. Un cuerpo general de informacion que presupone el garante utilizado en el argumen-
to (Teorias cientificas bien corroboradas, sistemas legislativos, teorias matematicas,
sistema formal de la légica proposicional, entre otras).

Ejemplo 2.26. Para el razonamiento vdlido del ejemplo 2.25 se sigue que la tesis es Q:“
se me seca la ropa”, el fundamento es el esquema dado por las proposiciones P — @Q y P,
el garante es el modus ponendo ponens y el cuerpo general es el sistema formal de la ldgica
proposicional.

Ejemplo 2.27. Para el conjunto de premisas

1. Si trabajo, entonces no estudio.
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2. Estudio o repruebo el curso de matemdticas.

3. Aprobé el curso de matemdticas.

Una conclusion posible es que “No trabajo”, para ello se hace la simbolizacion adecuada
donde P : “ Trabajo”, Q:“ Estudio” y R: “ Apruebo el curso de matemdticas”, de acuerdo
con esto las tres proposiciones se escriben como P —~ @, QV ~ R y R debe concluirse
entonces ~ P.

1. P—>~(Q ... Premisa

2.QV~R ... Premisa

3. R ... Premisa

4. Q ... Modus tolendo ponens entre 2 y 3
5. ~P ... Modus tolendo tolens entre 1 y 4

Ya que se logro deducir la conclusion a partir de las premisas empleando dos teoremas del
sistema formal de la [dgica proposicional, entonces el razonamiento es vdlido.

Ejemplo 2.28. Para las premisas

1. Si tengo razon, entonces estoy loco.

2. Pero si estoy loco, entonces tengo razon.

considérese la conclusion “No estoy loco”. Si se representa las proposiciones simples como
M: “ tengo razon” y N: “ estoy loco” entonces las premisas se escriben como M — N y
N — M y habria que concluir la proposicion ~ N. Entre las dos hipdtesis es posible plantear
solo una transitividad para tener N — N y haciendo uso de la definicion de condicional se
escribe ~ NV N que es la propiedad de medio excluido y a partir de la cual no se deduce
~ N pues ninguna regla ni axioma ni definicion ni teorema lo permite, por lo que se con-
cluye que el razonamiento es invdlido. Construya la tabla de verdad de este razonamiento
para que determinar por qué no es posible deducir la conclusion a partir de las premisas.

Los siguientes ejemplos es mas importante la estructura que el significado de la proposi-
cion, es por ello que ya se trabaja en un plano abstracto o simboélico y es muy importante
la correcta interpretacion del significado de cada teorema.

Ejemplo 2.29. Con base en el conjunto de premisas
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1)~P —~Q 2)S—R
3) T —~ P 4)SvT

Deducir la conclusion ~ Q V R. En este punto es necesario convenir que no hay un uni-
co camino para obtener la conclusion, ademds se pueden utilizar todos los pasos que sean
necesarios, asi alguien puede hacer uso de la propiedad transitiva entre las premisas 1 y 3,
otra persona interpreta correctamente que entre las premisas 2, 3 y 4 existe un método de
casos, o tal vez que que la hipdtesis 4 SV T se puede escribir como el condicional ~T — S
para luego hacer un silogismo con la hipdtesis 2, en fin, son muchos los caminos, veamos
otra alternativa

1. ~P—~Q ... Hipdtesis

2.8 —-R ... Hipdtesis

3. T —~P ... Hipotesis

4. 85vT ... Hipotesis

5.~ (~Q) =~ (~P) ...Contrarreciproco en 1

6. Q — P ... Doble negacion en 5

7. RV ~ P ... Método de casos entre 2,3 y 4
8. ~PVR ... Conmutativa en 7

9. P— R ... Definicion de condicional en 8
10. Q — R ... Transitividad entre 6 y 9

11. ~QVR ... Definicion de condicional en 10

Ast la conclusion se sigue y el razonamiento es vdlido dentro del sistema formal que se ha
construido.

Ejemplo 2.30. Se tiene el conjunto de premisas

Nex=y—xLy 2)y=0cxLy
3) (x=0Vay=0)—y=0 4)(r=y—y=0)—z=0

Cuya conclusion es ~ (x < yAxz = 1). En este caso se estd utilizando una serie de simbolos
matemdticos los cuales se pueden cambiar para obtener el lenguaje proposicional trabajado
hasta este punto, se simboliza © =y como P, Q : x <y de donde ~ P :x £y, R:y =0,
S:x=0,T:2y=0,U:x =1y la conclusion queda escrita como ~ (Q N\ U), nétese que
dentro del conjunto de hipotesis no estd la proposicion U : x = 1, es por ello que ésta debe
surgir de una adjuncion. De acuerdo con esta nueva simbolizacion se tiene la deduccion.
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1. P—>~Q ... Hipotesis

2. R~ (@ ... Hipctesis

3. (SvT)— R ... Hipdtesis

4. (P—R)— S ... Hipdtesis

5 R—~QN~Q — R ...Definicion de bicondicional en 2

6. ~Q — R ...Simplificacion en 5

7 P—R ... Transitividad entre 1 y 6

8.8 ... Modus ponendo ponens entre 4 y 7
9.5vT ... Adjuncion en 8

10. R ... Modus ponendo ponens entre 3 y 9
11. R —~ (@ .. Simplificacion en 5

12. ~Q ... Modus ponendo ponens entre 10 y 11
18. ~QV ~U ... Adjuncion en 12

14. ~(QANU) ... Ley D’Morgan en 13

Se logra concluir asi que ~ (Q ANU) es una proposicion verdadera y por ende su equivalente
~(x<yhz=1).

Ejemplo 2.31. Para el conjunto de premisas

1. ~(y—z=2Vr+y#s
2. ~(x>yVy<5h)
3. x=2—>x+yF8
Se desprende la conclusion ~ (x = 2Vy < 5), para ello se hard la simbolizacion en términos

de proposiciones como P :y—z=2,Q :x+y>8 R:x >y, S:y<byT:zxz=2,la
deduccion se plantea a continuacion

1.~ (PV~Q) ... Hipotesis

2.~ (RVS) ... Hipotesis

3. T —~Q ... Hipotesis

4.~ PN~ (~Q) ... Ley D’Morgan en 1

5. ~PANQ ... Doble negacion en 4

6. ~ RN~ S ... Ley D’Morgan en 2
.~ S ... Simplificacion en 6

8. Q ...Simplificacion en 5

9.~ (~Q) >~T ... Contrarreciproco en 3

10. Q -~ T ... Doble negacion en 9
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11. ~T ... Modus ponendo ponens entre 8 y 10
12. ~TN~ S ... Conguncion entre 11 y 7
13. ~(T'VvS) ... Ley D’Morgan en 12

Lo que permite concluir que la proposicion ~ (x =2V y < 5) es verdadera con base en las
premisas dadas.

Ejemplo 2.32. En algunas situaciones es posible obtener una conclusion que sea falsa,
es decir, que represente una contradiccion (los valores de verdad sean todos falsos), asi el
razonamiento sea vdlido a raiz del sistema formal construido. Una de las contradicciones
clasicas en el estudio de las matemdticas es P\ ~ P, esto independiente del valor de verdad
de P. Para ver esta situacion consideremos el conjunto de premisas

1. (S—=P)—Q
2. ~(~SNQ)
3. ~8

Bajo este conjunto de hipdtesis es posible aplicar el siguiente razonamiento

1. (S—P—Q) ... Hipotesis

2.~ (~SANQ) ... Hipdtesis

3.~ 8 ... Hipotesis

4.~ (~ SV ~Q ... Ley D’Morgan en 2

5. 5V ~Q ... Doble Negacion en /

6. ~Q ... Modus tolendo ponens entre 8 y &5
7. ~Q —~ (S — P) ... Contrarreciproco en 1

8.~ (S—P) ... Modus ponendo ponens entre 6 y 7
9. SN~ P ...Ley D’Morgan en 8

10. S ... Simplificacion en 9

11. SA~ S ... Conjuncion entre 3 y 10

El razonamiento es vdlido de acuerdo con el sistema formal y la conclusion representa una
contradiccion dada por SA ~ S.

Hipotesis ‘ Conclusion ‘
1.T—P
22.R— S T—(~P—Y9)

3.~ (~RA~T)
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. T — P

.R— S

.~ (~RAN~T)
.~ (RN~ (~T)
.~ (~T)V ~(~R)
.~(~T)VR
.~T—R
.~T — 8

.~ P—-~T

10. ~P — S

11. (~P—=S)Vv~T
12. ~ TV (~ P — 8)
13.T - (~P—S)

© 00 N O Ot = W N

.. Hipotesis

.. Hipotesis

.. Hipotesis

.. Ley D’Morgan en 3

.. Conmutativa en 4

.. Doble negacion en 5

.. Definicion de condicional en 6
.. Transitividad entre 2 y 7

.. Contrarreciproco en 1

.. Transitividad entre 8 y 9

.. Axioma de adjuncién en 10
.. Conmutativa en 11

.. Definicion de condicional en 12

Hipotesis ‘ Conclusion ‘

1. PA~Q
2.P—~R| ~(RVS)
3.QV~S
1. PA~Q .. Hipotesis
2. P—->~R .. Hipotesis
3. QV~S .. Hipotesis
4. P .. Simplificacién en 1
5. ~ R .. Modus ponendo ponens entre 2 y 4
6. ~Q —~ 95 .. Definicion de condicional en 3
7.~Q .. Simplificacién en 1
8. ~ 5 .. Modus ponendo ponens entre 6 y 7
9.~ RA~ S .. Conjuncioén entre 5y 8
10. ~ (RV S .. Conjuncion entre 5y 8
Hipotesis ‘ Conclusion ‘
~R—Q

T—~Q |(TVv~S) >R
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l.~R—Q .. Hipotesis

2.T —~Q .. Hipotesis

3.~8 —>~Q .. Hipotesis

4. (TV ~S)— (~QV~Q) .. Adicion entre implicaciones entre 2 y 3
5. (TV ~8) =~ Q .. Idempotencia en 4

6. ~Q —~ (~ R) .. Contrarreciproco en 1

7.~Q—R .. Doble negacion en 6

8. (Tv~S)—R .. Transitividad entre 5y 7

2.6. Ejercicios

1. Verifique mediante las reglas de inferencia, las definiciones y teoremas, si el razon-
amiento es o no valido. Justifique cada paso.

Hipotesis ‘ Conclusion H H Hipotesis ‘ Conclusion
1. PV(QAR) 1. W

2.~ (QAR) T 2. W — (P—Q) QVR
3.P->T 3. P

Hipotesis ‘ Conclusion H H Hipotesis ‘ Conclusion
1.(P—-Q)—R 1.~ (TN~ N)

2.~RVS A 2.~ (SAP)V~P ~(TVP)ANF
3.~ (PN~ Q) 3. ~[(~ FA~ F)V ~ N]

4. (SvT)— A 4. ~N — (SAP)

Hipotesis ‘ Conclusion H H Hipotesis ‘ Conclusion
1. W -~ 27 1.T— P

2. (~ZVT)— L ~ M 22.R— S T— (~P—Y5)
3. M —~ L 3.~ (~RAN~T)

4. ~W —~ Z

2. En cada uno de los siguientes problemas, identifique premisas y conclusion; traduzca
a la forma simbdlica, y empleando las reglas de inferencia, las definiciones y teoremas;
asi mismo, establezca para cada argumento si es o no valido. Intente, inicialmente,
analizar el razonamiento sin recurrir a la representacion simbolica.

a) Si llueve entonces iré al cine. Llueve. Luego, iré al cine.

b) Si llueve entonces iré al cine. No llueve. Luego, no iré al cine.



2.6 Ejercicios 67

¢)

d)

=

Si me caigo de la bicicleta, me golpearé. Estoy golpeado; luego, me cai de la
bicicleta.

Si voy al colegio pasaré por la biblioteca. Si paso por la biblioteca consultaré el
diccionario de sinénimos. Voy al colegio; luego, consulté el diccionario de sinén-
imos.

Para que valga la pena tomarlo, es suficiente que sea un excelente curso. O las
calificaciones son justas o no vale la pena tomar el curso. Las calificaciones no
son justas. Luego, no es un excelente curso.

Para que el candidato llegue a la presidencia es necesario que gane las elecciones
en el departamento. El ganara las elecciones en el departamento tnicamente si
defiende los derechos civiles. El no defendera los derechos civiles. Por tanto, el
candidato no llegara a la presidencia.

Si los precios son bajos, entonces los salarios son bajos. Los precios son bajos o
no hay control de precios. Si no hay control de precios, entonces hay inflacion.
No hay inflacién; por tanto, los salarios son bajos.

La logica es facil o le gusta a los estudiantes. Si las matematicas son dificiles
entonces la logica no es facil. Por tanto, si a los estudiantes no les gusta la
logica, las matematicas no son dificiles.

Si no me motilo, entonces me quedaré en casa. Voy al cine. Por tanto, me motilé.

Si el partido A gana las elecciones, tendra mayoria en el Congreso. Si tiene
mayoria en el Congreso, el presidente podra cumplir el programa de gobierno
propuesto. O el presidente no podra cumplir el programa propuesto o la oposicion
lo atacarda duramente. Pero la oposiciéon no lo atacara duramente. Luego, el
partido A no ganara las elecciones.

Si este poligono es concavo, entonces es escaleno. Si este poligono es inscribible,
entonces es regular. Si este poligono es escaleno, no es regular. Si este poligono
no es inscribible, entonces no es equilatero o no es equidngulo. Este poligono es
equilatero y equidngulo. Por tanto, este poligono no es céncavo.

Si asisto al colegio conversaré con mis amigos. Luego, si no voy al colegio, en-
tonces no conversaré con mis amigos.

Voy al estadio o me quedo en casa. Si voy al estadio entonces dormiré en la casa
de mi hermano. No me quedé en casa. Luego, dormi en la casa de mi hermano.

Carlos aprobo el examen de matematicas y ocup6 el primer puesto en biologia. Si
Felipe no aprobé el examen de mateméticas, entonces Carlos no ocup6 el primer
puesto en biologfa. Si Felipe aprob6 el examen de matematicas, entonces aprobd
el ano. Luego, Carlos aprobo el examen de matematicas y Felipe aprobd el afo.

Si Nacional gan6 el campeonato, entonces Junior fue el segundo o América fue
el segundo. Si Junior fue el segundo, entonces Nacional no gané el campeonato.
Si Tolima fue el segundo, entonces América no fue el segundo. Nacional gané el
campeonato. Luego, Tolima no fue el segundo.
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0) Si tengo razon, entonces estoy loco. Pero si estoy loco, entonces tengo razon. Por
tanto, no estoy loco.

p) Si el tiempo mejora, entonces la agricultura se recupera. Si la reforma agraria
demora, entonces la agricultura no se recupera. El tiempo mejora y el periodo

termina.

q) Si la reforma agraria no demora, el plan agrario se cumple. Luego, el periodo
termina y el plan agrario se cumple.

r) Si la actividad progresa, entonces los problemas se agravaran. Si el Congreso
sesiona, las reformas se aprobaran. Las reformas no se aprueban. Luego, el Con-

greso no sesiona o la inactividad no progresa.

3. Escriba una deduccién formal de cada uno de los razonamientos siguientes a partir
de las premisas enumeradas en cada caso

Hipotesis ‘Conclusi()n H H Hipotesis Conclusion
1.RAS .22 -524+6=0—2>1
2.Q — (~SV~R) 2.2 <4—2<1
3.UVW ~ (PVQ) 3.0=2—-22-5x+6=0 |22=4Vva®>4
4.U -~ P 42=3—>22-52+6=0
5 W —~ P S.x=2Vzr=3

6

2?2 >4— (a2 =4Vt >4)

4. Construya un argumento valido en el que tanto las premisas como la conclusiéon sean

verdaderas.

5. Pruebe que los siguientes conjuntos de premisas son inconsistentes concluyendo una
contradiccién para cada uno, ver ejemplo 2.32

Premisas H H Premisas H H Premisas
1.~Q—R 1.P— (Q — R) I.R— (RAQ)
2.~RVS 2.Q 2.~SVR
3.~ (PVQ) 3.~P—R 3.~TV~Q
4. ~ P -~ § 4. ~ SN~ R 4. SAT
Premisas H H H HPremisas
1.Q—P 1.TV ~R

2. ~(PVR) 2. ~(R—29)
3. QVR 3.7 — S
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6. Construya un argumento invélido en el que tanto las premisas como la conclusion
sean proposiciones verdaderas.

7. Deduzca la conclusiéon a partir del conjunto de hipotesis que se dan

Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
P— (QVR)
R | ~Pong (P—Q) (@~ P)

~ (P Q)
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
~@Q —~R ~(RAT) ||~PVR—SAN~Q ~R
~(QAT) Q
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
P—(QVR)

P—-R |P—(Q—R) PAQ— R
~Q
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
~ RV ~S

R—~Q ||P—(QAR) P—Q
Q— S
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
~P—R

S PA~Q ~(P<Q)

~S— (~PAN~R)
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
P —~Q ~ (PV ~ R)
PV R QVP
R —~Q ~(T<S)||R—S SAT
T—Q QNS —TANS
S
Hipotesis ‘ H Conclusion H Hipotesis ‘ Conclusion
R—S
S—Q SVI = QI (PAQN(PVQ) [[PANQVR)]VI[PVQ)AQ]
RV (~ SA ~T)
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2.7.

10.

11.

12.
13.
14.

15.

16.

17.

Resumen Conceptual

. Proposiciéon: Enunciado que admite un tnico valor de verdad: Verdadero (V) o falso

(F), se denotan con letras maytusculas o mintsculas o por medio de indices P, p, P,.

. Negaciéon de una proposicion: Es la proposicion que se obtiene al anteponer el

operador no, la negacién cambia el valor de verdad de la proposicién, se escribe ~ P.

. Posibilidades légicas: Combinaciones de los posibles valores de verdad de n proposi-

ciones, en cuyo caso hay 2™ posibilidades logicas.

. Conectores: Son los enlaces entre proposiciones se hace uso de los conectores V, A,

. Proposicion simple: Cuando aparece una y solo una proposicion.

. Proposicion compuesta: Cuando existen dos o mas proposiciones unidas con un

conector o mas.

Disjuncioén: Es la proposiciéon compuesta resultante al unir dos proposiciones con el
conector V, se escribe PV Q.

. Tabla de verdad: Es la tabla que indica el valor de verdad de una proposicién

compuesta de acuerdo con los conectores implicados y las posibilidades logicas.

. Conjuncion: Es la proposiciéon compuesta resultante al unir dos proposiciones con

el conector A, se escribe P A Q.

Condicional: Es la proposicién compuesta resultante al unir dos proposiciones con
el conector —, se escribe P — Q). A P se le llama hipoétesis y a @) tesis.

Implicacién: Es un condicional cuyos valores de verdad son verdaderos indepen-
dientes de los valores de las proposiciones simples P, ), se escribe P = Q.

Reciproco: Es el condicional () — P asociado a P — Q.
Contrario: Es el condicional ~ P —~ @ asociado a P — Q).
Contrarreciproco: Es el condicional ~ @) —~ P asociado a P — Q.

Condicién necesaria pero no suficiente: Cuando la condicion es indispensable
para la realizacion de un acontecimiento, pero no basta.

Condicién suficiente pero no necesaria: Cuando la condicién basta, pero no es
indispensable para la realizaciéon de un acontecimiento.

Condicién necesaria y suficiente: Cuando la condiciéon basta y es indispensable
para que se realice un acontecimiento.
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18.

19.

20.

21.

22.

23.

24.
25.
26.
27.
28.
29.

30.

31.

32.
33.

34.
35.
36.
37.
38.

Bicondicional: Es la proposicién compuesta resultante al unir dos proposiciones con
el conector «, se escribe P « Q).

Tautologia: Es una proposicion compuesta verdadera independientes del valor de
verdad de las proposiciones simples.

Contradiccion: Es una proposicién compuesta falsa independiente de los valores de
verdad de las proposiciones simples.

Indeterminaciéon: Es una proposiciéon compuesta que no es ni verdadera ni falsa
para todos los valores de verdad.

Circuitos logicos: Es una forma de representacion de una proposiciéon compuesta
a partir de circuitos eléctricos, los conectores en paralelo se representan como una
disjuncién y en serie con una conjuncion.

Diagrama de flujos: Es la representacién de los diferentes caminos en que una
determinada informacién se dirige entre dos terminales.

Definiciéon de conjuncion: P A @ equivale a ~ (~ PV ~ Q).

Definicién de condicional: P — @ equivale a ~ PV Q.

Definicién de bicondicional: P < () equivale a (P — Q) A (Q — P).
Axioma de idempotencia: PV P — P es una proposicion verdadera.
Axioma de adjunciéon: P — PV @ es una proposiciéon verdadera.

Axioma de conmutatividad: PV (Q — @ V P es una proposiciéon verdadera.

Adicién a la implicacion: (P — Q) — (RV P — RV @) es una proposicion
verdadera.

Modus ponendo ponens: Si P — ) y P son proposiciones verdaderas entonces )
es verdadera.

Sustitucion: Si P < @ entonces se puede sustituir P por @ o viceversa.

Transitividad: Si P — () y Q — R son proposiciones verdaderas entonces P — R
también lo es.

Medio Excluido: P — P, ~ PV Py PV ~ P son proposiciones verdaderas.
Conjuncién: Si P y @ son verdaderos entonces P A Q también lo es.

Doble negacion: P <~ (~ P) es una proposicion verdadera.
Contrarreciproco: (P — Q) < (~ @ —~ P) es una proposicion verdadera

Simplificaciéon: Si P A @ es verdadera entonces P es verdadera y @) es verdadera.
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39.

40.

41.

42.

43.
44.
45.

46.

47.

48.

Conmutativa: (P — Q) < (Q - P)y (PANQ) < (QAP)

Equivalencia: P «— P, (P < Q) < (Q < P)y (P < Q) < (~ Q <~ P) son
proposiciones verdaderas.

Idempotencia: PV P <~ Py P A\ P < P son proposiciones verdaderas.

Adicion entre implicaciones: Si P — @Q y R — S son proposiciones verdaderas
entonces PVR —-QV Sy PAR— QAS son proposiciones verdaderas.

Meétodo de casos: Si PV Q, P — Ry (Q — S son verdaderas asi lo sera RV S.
Modus tolendo ponens: Si PV Q) y ~ P son verdaderos entonces () es verdadero.
Modus tolendo tolens: Si P — ) y ~ () son verdaderas entonces ~ P es verdadera.

Ley D’Morgan: ~ (PV Q) < (~ P\ ~ Q), ~ (PANQ) < (~ PV ~ Q) y
~ (P — Q) < (PN ~ Q) son proposiciones verdaderas.

Asociativa: [PV (QV R)] < [([PVQ)V Ry [PAN(QAR)] < [(PANQ)A R] son

proposiciones verdaderas.

Distributiva: [PV(QAR)] < [(PVQ)A(PVR)]y [PA(QVR)] < [(PAQ)V(PAR)]

son proposiciones verdaderas.



Capitulo 3

Logica Cuantificacional

3.1. Nociones Preeliminares

Una oracién es una expresion de juicio que se compone de un sujeto y un predicado, el
sujeto es aquello a lo que se hace referencia como una persona, un objeto, un animal, etc. se
denotaran con letras latinas mintsculas; mientras que el predicado es la accién que efectta
el sujeto o una caracteristica del mismo, se denotaran con letras latinas maytsculas. Los
sujetos pueden ser constantes o variables, son constantes cuando se hace referencia a un
sujeto particular y variables es cuando hace alusion a generalidades o conjuntos.

Para denotar una oraciéon se escribe primero el predicado y luego el sujeto como un sub-
indice del mismo: P, o P, en el primero se hara referencia a los predicados cuyos sujetos
son variables en dicho caso se llamarid Funciéon proposicional haciendo alusiéon a que el
predicado esta ligado al sujeto variable z. Para la segunda notacién P, el sujeto es una
constante denotada por a. Si el predicado depende de dos sujetos se escribe P,y 0 FPyy,.

Las oracién son solo expresiones mas no proposiciones, es decir, no necesariamente deben
poseer un valor de verdad, en el caso en que las funciones proposicionales asuman el valor de
un sujeto constante, lo cual se llamaré Individualizacion o Ejemplificaciéon, la oraciéon
resultante serd una proposicion, por ejemplo, en el caso en que se tenga la funciéon proposi-
cional P,, una individualizacién aplicable es P,, es decir, la variable x asume el valor de a, lo
cual se es posible escribirlo como (a/z)(P,) haciendo alusion a esta misma individualizacion.

Ejemplo 3.1. En la oracion "El cielo es azul” el sujeto que denotaremos c estd represen-
tado por el cielo, ¢ : Cielo, mientras que el predicado es la caracteristica, es decir, ser
) ) ) )
azul, se escribe A : Azul y la oracion puede ser representada en términos de la ldgica
proposicional como A.. En este caso no se le puede dar un valor de verdad a la oracion
a que depende de las condiciones climdticas, de la posicion del observador, o de la hora.
A, d de de | d limdticas, del del ob dor, o dela h
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Las funciones proposicionales son susceptibles de ser cuantificadas, es decir, es posible de-
terminar que todos los posibles valores de la variable x cumplan la funcién proposicional
P, en este caso se habla del Cuantificador Universal el cual se escribe como V y se lee
para todo, se escribe (Vz)(P;) para indicar que todos los x asumen el valor de la funciéon
proposicional.

En el caso en que algunos de los elementos = de la variable produzcan que P, es verdadera,
pero no todos, entonces se haré alusiéon al Cuantificador Existencial, denotado como 3y
se lee existe, asi (3x)(P;) indica que algunos de las x satisfacen la funciéon proposicional P;.
Se dijo anteriormente que las funciones proposicionales no son proposiciones, sin embargo
al ser cuantificadas, sea por bajo el cuantificador universal o existencial, se transforma en
una proposicion la cual tiene un valor de verdad. Los valores posibles que puede tomar la
variable z en las expresiones (Va)(Py) y (3x)(P;) se le llama Dominio de Referencia, el
cual puede ser un conjunto de personas, objetos, nimeros u otros objetos, esto depende de
la naturaleza de los sujetos.

Ejemplo 3.2. Consideremos la oracion "Existen letras que no son vocales”. En este caso
el sujeto son las x : letras, el cual es un sujeto variable ya que x puede asumir cualquiera
de los veintiseis caracteres que conforman el alfabeto latino el cual constituye el dominio
de referencia. Por su parte el predicado se asumird como P : “son vocales” y la negacion le
corresponde a la funcion proposicional como sigue (3z)(~ Py), oracion que es verdadera ya
que las letras m,n,r son algunas de las que no son vocales. La oracion original es equiva-
lente a "No todas las letras son vocales” la cual se puede escribir como ~ (Yx)(Py), y ast se
presenta la equivalencia (3x)(~ P,) <>~ (Yx)(P;), propiedad que induce el teorema 3.4.

Ejemplo 3.3. Para la oracion “Todo nimero positivo es mayor que cero” se puede encon-
trar una expresion equivalente la cual se escribe como "Para todo nimero, si el nimero es
positivo entonces el niumero es mayor que cero”, en esta ultima expresion se puede iden-
tificar un cuantificador en este caso universal, se encuentra un sujeto "x:numero” el cual
es variable (dominio de referencia en los reales), dos predicados, el primero es ser positivo
"P:Positivo” y el seqgundo ser mayor que cero "M:Mayor que cero”, ademds tiene la estruc-
tura de un condicional ya que aparece el conector si...entonces...; con base en esto la
oracion se representa como (Vz)(Py — My). En el caso en que © =5 se tiene la proposi-
cion Ps — My la cual es verdadera.

En el ejemplo 3.3 la proposicion (Vz)(P, — M) (1) se hizo que la variable z asumiera
el valor de 5 es decir se sustituy6é x por 5 lo cual se escribe como (5/x) para indicar este
cambio, lo que produce una proposiciéon verdadera, este procedimiento es la Ejemplifi-
cacion Universal. Sin embargo, la proposicion (1) puede asumir otros valores compuestos
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como el caso de una suma o una multiplicacién, asi para (3 + 2/x) resulta la proposicion
P39 — Ms3yoy Pyg — Mys surge cuando la variable x toma el valor de 4 -3 que se escribe
como (4 -3/z).

Ejemplo 3.4. En la oracion "Para todo x,y, z, st x es mayor o igual que y y y €s mayor z
entonces x es mayor que z” se identifican tres sujetos variables y ademds tres cuantificadores
ligados a las tres vartables x, y y z en dicho caso se escribe como

Vo) (Vy)(V2)(x >y ANy > 2) = x> z)

FEsta proposicion representa una propiedad transitiva respecto de la relacion de orden, al
hacer la individualizacion deben tomarse tres elementos uno por cada cuantificador. El do-
minio de referencia son nuevamente los nimeros reales esto para cada una de las variables.

Se procede de forma inductiva para ejemplificar la proposiciéon
(V) (V) (V2) (& > y Ay > 2) — = > 2)

obtenida en el ejemplo 3.4, en el caso en que = asuma el valor de 5, (5/z) resulta la
proposicion (Vy)(Vz)((b > y Ay > z) — 5 > z), tomemos ahora la ejemplificacion (3/y)
para tener la proposicion ligada a la variable z (Vz)((5 > 3A3 > z) — 5 > z) y si se asume
la ejemplificacion (—1/z) resulta la proposicion

(5>3A3>-1)—5>-1

La cual es verdadera. Este procedimiento inductivo, es decir, cuantificador a cuantificador
se puede resumir como

1. (Vz)(Vy)(V2)((x >y Ay > 2) — x> z) ...Premisa
2.5>3A3>-1)—5>-1 .. (5/2)(3/y)(—=1/z) en 1

Ejemplo 3.5. Consideremos que la proposicion (Vx)(z? > 1) (1) es verdadera asumiendo

que el dominio de referencia son todos los nimeros reales. Si hacemos que x = % entonces
al ejemplificar la proposicion (1) resulta (%) > 1 equivalente a i > 1 lo cual es en si una

L . L 2 < 1
contradiccion, ast la proposicion (Vx)(x* > 1) es falsa ya que se encontré un caso x = 5

en que la funcion proposicional P, : x® > 1 es falsa; este procedimiento se llama Con-
traejemplo. En el caso en que se modifique el dominio de referencia para todos los reales

mayores o iguales que 1, la proposicion (Vx)(x? > 1) es ya verdadera.

Con base en el ejemplo 3.5 se sigue que un contraejemplo consiste en exhibir un caso en
el que la funcién proposicional no sea verdadera, esto ligado al cuantificador que le pre-
cede a dicha funcién proposicional, ya que la proposicién (3z)(z% > 1) es verdadera puesto
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que si = 3 entonces 32 > 1 y asi existe un ntmero que produce que P, sea verdadera.
La proposicion (3z)(z? < —2) es falsa ya que ningtin ntimero real elevado al cuadrado es
negativo, asi el contrajemplo no solo depende de la funciéon proposicional sino también del
cuantificador asociado a éste.

Ejemplo 3.6. Consideremos el conjunto A = {1,2,3,4} el cual servird como dominio de
referencia, es decir, las variables x e y asumirdn cualquiera de los cuatro numeros que con-
forman el conjunto A. La proposicion (Vx)(Jy)(z? < y?) es falsa, para ello se inicia con
cada términos, asi si x = 1 entonces existe y = 2 en A tal que 12 < 22, si & = 2 entonces
y =3, si x =3 existe y = 4, pero si x = 4 no existe ningun y en el conjunto A tal que
4% < 42, como uno de los nimeros falla entonces no es cierto que se cumple para todos los
x en A.

La proposicion (3x)(3y)(z2 —y = 0) es verdadera ya que existen dos niimeros x =2 yy = 4
en A tal que x? —y = 4 — 4 = 0. Mientras que la proposicion (Yx)[~ (Jy)(z® + 1 = y?)] es
falsa, puesto que si x = 1 entonces 2> +1=1+1=2 y no existe en A un nimero tal que
2 =92

En los siguientes ejemplos se explicara el papel de las inferencias dentro de la logica cuan-
tificacional, para ello es necesario recurrir al hecho que en las ejemplificaciéon de una funcion
proposicional es una proposiciéon y por tanto es posible hacer uso de las propiedades de la
logica proposicional estudiadas en el capitulo precedente.

Ejemplo 3.7. Consideremos un conjunto de premisas dados por

1. Todo nimero real es positivo o es negativo o es cero.
2. 4 no es un numero negativo.

3. 4 no es cero.

En este caso es posible establecer una conclusion la cual es "4 es un nimero positivo”.
Veamos como a través de la logica proposicional se puede validar dicha conclusion.

En la primer premisa se pueden identificar tres predicados "P:Positivo”, "N :Negativo” vy
"C':Cero”, por tanto esta premisa se puede escribir en términos de ldgica cuantificacional
como (Vx)(P,V M,V C;) que por la propiedad asociativa de la l6gica proposicional se escribe
como (Vx)((Py V Ny) V Cy). Con base en los predicados antes definidos, las dos premisas
restantes se escriben como ~ Ny y ~ Cy; por lo tanto se tiene

1. (Vz)((Py V Ng) VCy) ... Premisa
2. ~ Ny ... Premisa

3. ~Cy ... Premisa
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La primer premisa puede ser ejemplificada si hacemos que x = 4 en cuyo caso se tiene la
proposicion (PyV Ny) V Cy, se escribe

4. (P4\/N4)\/C4 (4/x) en 1

En 2, 3y 4 se tienen proposiciones, es por ello que se puede hacer uso del sistema formal
de la l6gica proposicional como es el modus tolendo ponens, veamos

5. P4V Ny ... Modus tolendo ponens entre 8 y 4
6. P, ... Modus tolendo ponens entre 2 y 5

Asi en el paso 6 se tiene la proposicion Py que se traduce en lenguaje natural como 4 es
positivo.

El ejemplo anterior indica el camino a seguir en el momento de resolver ejercicios de in-
ferencia en términos de cuantificadores, para ello se hacen primero las ejemplificaciones
necesarias para luego hacer uso de las propiedades de la logica proposicional. El siguiente
ejemplo es tomado del libro introduccién a la logica matematica, ver la referencia [19].

Ejemplo 3.8. Las premisas que se enumeran a continuacion tienen por dominio de refer-
encia a los nimeros enteros.

1. Para cada x, si x es un numero par, entonces x + 4 es un nimero par.
2. Para cada x, si x es un numero par, entonces x no es un numMero impar.

3. Dos es un numero par.

Son verdaderas, en este caso la conclusion que se sigue es que 2 + 4 no es un niumero
impar”. Para escribir en el lenguaje de la ldgica cuantificacional inducida hasta este punto,
se asumird que D es el predicado "nimero par” e I el predicado "nimero tmpar”, es por ello
que las premisas dadas en lenguaje natural se escriben como

1. V2)(Ey — Epi4) ... Hipdtesis
2. (Va)(Ey —~ 1) ... Hipdtesis
3. Es ... Hipotesis

La clave estd ahora en como hacer la ejemplificacion para los dos cuantificadores que se
presentan, ya que la tesis contiene al sujeto constante 2+ 4 y en la primer hipdtesis estd el
sujeto variable x + 4 entonces se hace necesario que x = 2. Posteriormente para ligar las
ejemplificaciones producto de la primer y sequnda hipdtesis se requiere que x = 2 + 4 para
la sequnda hipdtesis, asi
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4. EQHE2+4 (2/.%') en 1
5. Eayq —r~ Iogy .. (244/z)en2

Ahora bien es posible hacer uso de los elementos del sistema formal de la [6gica proposicional
para tener

6. By —~ Ioyy ... Transitividad entre 4 y 5
7.~ Iyty) ... Modus ponendo ponens entre 3 y 6

Como se obtiene la conclusion ~ Isiy entonces se concluye que 2 + 4 no es un nimero
impar que era el propdsito.

Ejemplo 3.9. Consideremos que el dominio de referencia es el conjunto de nimeros en-
teros. Para las premisas

1. Para cada x, si x es divisible por 6 entonces x es divisible por 2

2. Para cada x, si x es divisible por 2 entonces x? es divisible por 2.

Una posible conclusion que se puede obtener es que "Para cada x, si x es divisible por 6
entonces x> es divisible por 2. Implicitamente se estd utilizando la propiedad de transitivi-
dad o silogismo hipotético para la obtener dicha tesis, sin embargo, no es propiamente dicha
propiedad por que cada premisa contiene el cuantificador universal.

Denotemos a S y D como los predicados "Divisible por 67 y "Divisible por 27 de forma
respectiva, entonces las premisas se escribe como

1. (Vx)(Sy — Dy) ... Hipdtesis
2. (Vx)(Dy — D,2) ... Hipdtesis

A continuacion hacemos uso de la ejemplificacion universal, en cuyo caso se hard que x
asuma el valor de b el cual es la representacion de cualquiera de los sujetos que cumplan
las funciones proposicionales Py : Sy — Dy y Qu 1 Dy — D2, ast

3. Sp — Dy ...(b/x) en 1
4. Dy — Dy ...(b/x) en 2

Como en los pasos 3 y 4 se obtienen proposiciones entonces es posible aplicar la propiedad
de transitividad para tener
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5. Sp — Dy ... Transitividad entre 3 y 4

Ya que el sujeto b es arbitrario, entonces la proposicion Sy — Dy2 obtenida en el paso 5
es posible extenderla a todos los x del dominio de referencia, dicha propiedad se denomina
Generalizacion Universal y por tanto

6. (Vz)(Sy — D,2) ... Generalizacion del universal en 5

Por lo que se obtiene la conclusion antes mencionada.

En el ejemplo 3.9 se sigue que si en el conjunto de premisas, cada una posee el cuan-
tificador universal, entonces la conclusién también debe poseer este mismo cuantificador,
ya que todos los elementos en el dominio de referencia comin cumplen las caracteristicas
dadas por las funciones proposicionales. En el caso en que por lo menos una de las premisas
tenga un cuantificador existencial entonces la conclusion se da en términos de este mismo
cuantificador, ya que existe por lo menos un elementos que no cumple todas las funciones
proposicionales dadas, este situaciéon se ilustra en el ejemplo 3.10.

Ejemplo 3.10. El dominio de referencia para las premisas que se enumeran a continuacion
es el conjunto de los nimeros enteros

1. Para cada x, si 23 es divisible por 3 entonces x es divisible por 3.
2. Ezxiste un x tal que x no es divisible por 3

Nétese que la conclusion es que “existe un x tal que x° no es divisible por 3”. Si hacemos

que T es el predicado "Divisible por 3”7 entonces las premisas se escriben como

1. (Vo) (Tys — Ty) ... Hipctesis
2. (Fx)(~ T, ... Hipdtesis

Ejemplificando respecto de los cuantificadores universal y existencial resulta

3. Tys — Ty ...(b/x) en 1
4. ~Ty ...(b/x) en 2
5. ~Tys ... Modus tolendo tolens entre 3 y 4

Notese que la ejemplificacion x = b estd sujeta al cuantificador existencial, es decir, no se
cumple para todos los b en el dominio de referencia, sino para algunos. Es por ello que no
es posible hacer una generalizacion universal como en el ejemplo 3.9 sino que se hard uso
de la Generalizacion FExistencial para tener
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6. (Fz)(~ Ty3) ... Generalizacion Existencial en 5

Y ast existe un x tal que x no es divisible por 3

A continuacion se especifica el sistema formal para la logica proposicional: Alfabeto, reglas
de formacion, definiciones, mecanismo deductivo (axiomas, reglas de inferencia) y los teo-
remas; los cuales surgen de forma natural con base en los ejemplos que se han ilustrado
hasta este punto.

3.2. Sistema Formal

3.2.1. Alfabeto

1. El mismo alfabeto de la légica proposicional.

2. El conjunto de términos individuales que denotan a los sujetos (variables y con-
stantes), en ambos casos se hace uso de las letras latinas minasculas para denotarlos,
para los primeros x,v, z, . . ., para los segundos a, b, c, . ..

3. El conjunto de letras predicativas que denotan las propiedades o caracteristicas de los
sujetos. Se denotaran con letras maytsculas.

4. El cuantificador universal denotado como V.

3.2.2. Reglas de Formacién

1. Si P, es una funcion proposicional entonces (Vz)(P,) designa una formula (f.b.f)

3.2.3. Definiciones

Definiciéon 3.1. Cuantificador Existencial Si P, es una funcion proposicional entonces
(Fx)(Py) designa la formula ~ (Vx)(~ Py), se escribe como (3x)(Py) <~ (Va)(~ Py).

3.2.4. Mecanismo Deductivo
3.2.4.1. Axiomas

Sea a un objeto matemético, x una variable libre en P,, entonces

Axioma 3.1. Ejemplificacion Universal (Vz)(P,) — (a/z)(P.) es un enunciado ver-
dadero. También se puede escribir como (Vx)(Py) — Py.
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Axioma 3.2. Generalizacion Universal (C — P,) — (C — (Vx)(FPy))

Axioma 3.3. Generalizacion Ezistencial (a/x)P, — (3x)(P,) es un enunciado ver-
dadero.

3.2.4.2. Reglas de Inferencia

Si P, es una funcién proposicional entonces

1. Generalizacién Universal Si P, es una formula (proposicion) verdadera entonces
(Vz)(Py) es una funcion verdadera.

2. Generalizacién Existencial Si (a/x)P, es verdadera entonces (Jz)(Py) es ver-
dadera.

3. Ejemplificacion Universal Si (Vz)(P,) es una proposicion verdadera entonces (a/x) P,
es verdadera o equivalente a P, es verdadera.

4. Ejemplificacion Existencial Si (3x)(FP;) es una proposicién verdadera entonces
(a/z)P, es verdadera o equivalente a P, es verdadera.

5. Contraejemplo Si ~ (a/x)P, es verdadera entonces ~ (Vz)(P,) es una proposicion
verdadera.

6. Distribucién del universal en la implicacién Si P, — ), es una funcién proposi-
cional entonces (Vz)(Py) — (V2)(Qx).

7. Distribucion del existencial en la implicaciéon Si P, — @, es una funcién
proposicional entonces (3z)(FP,) — (Fz)(Qx)-

3.2.5. Teoremas

Antes de enunciar los teoremas refentes a la logica cuantificacional veamos algunos ejemplos
que clarifican el contenido de los mismo.

Ejemplo 3.11. Consideremos las funciones proposicionales Py : x es par y Qg : T es impar,
donde el dominio de referencia sean los niumeros enteros. La disjuncion entre P, y Q. estd
dada por P,V Qg : x es parV x es impar, que al cuantificar respecto del universal se tiene
la proposicion

(Vx)(x es parV x es impar)
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La cual es una proposicion verdadera, ya que un entero es par o es impar. La cuantificacion
de las funciones proposicionales Py y Qn conduce a (Vz)(z es par) y (Vz)(z es impar), que
son ambas proposiciones falsas y por ello la conjuncion entre éstas

(Vz)(x es par) V (Vx)(z es impar)
es falsa de acuerdo con la tabla de verdad de la disjuncion, es por ello que el condicional
[(Vz)(x es par) vV (Vz)(x es impar)] — (Vx)(x es parV x es impar)

es verdadero puesto que el antecedente es falso pero el consecuente es verdadero (ver la tabla
de verdad del condicional). Mientras que el condicional

(Vx)(z es parV z es impar) — [(Vz)(x es par) V (Vz)(z es impar)]

es falso por tener antecedente verdadero pero consecuente falso. Es por ello que el condicional
[(V2)(Pr)V (V2)(Qz)] — (Vz)(Py V Qz) es verdadero como se demostrard en el teorema 3.1,
mientras que el condicional (Vx)(PyV Q) — [(Vz)(Py)V (Vx)(Qz)] no siempre es verdadero
como se acaba de ilustrar.

Teorema 3.1. Propiedades del cuantificador universal Sean P, y Q) funciones proposi-
cionales entonces

Demostracion [Prosa|

Por el teorema de la doble negacion de la logica proposicional 2.3 se tiene que ~ (~ P,) —
P, de acuerdo con la regla de inferencia de la distribucién del universal en la implicacion
resulta la proposicion (Vz)(~ (~ P)) — (Vx)(P;) (1). Por un razonamiento analogo se
tiene que P, —~ (~ P,) lo que induce la proposicion (Vx)(P,) — (Vx)(~ (~ Py)) (2). Por
el teorema de conjuncién de la légica proposicional se sigue que

(V) (~ (~ Pr)) = (Vo) (Po)] A (V) (Pe) — (V) (~ (~ Pr))]

Que por la definicion de bicondicional se concluye que (Vz)(~ (~ Py)) < (Vx)(FPr).
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Demostremos ahora la segunda propiedad, para ello por el teorema de simplificacion (2.7)
de la légica proposicional resultan las proposiciones P, A Q. — Pry P AN Q. — Q, que al
aplicar la distribucion del universal respecto de la implicacion se sigue que (V) (Py AQy) —
(Vx)(Pr) y (Vo) (Py A Qz) — (Vx)(Qz), en este caso se tiene dos implicaciones, para lo que
es posible hacer uso del teorema de adicién entre implicaciones para tener

[(V2) (P A Qu) A (Y2) (Pr A Qz)] — [(V2) (Po) A (V2)(Q)]
Haciendo uso de la propiedad de idempotencia se tiene la proposicion

(V) (Pr A Q) — [(Va) (Pe) A (V) (Qa)] (3)

Al ejemplificar respecto del cuantificador universal (axioma 3.1) se tienen las expresiones
(Vx)(Py) — P,y (V2)(Qz) — Qq, donde (a/x), proposiciones a las que se puede aplicar la
adicion entre implicaciones resultando [(Va)(Py) A (Vx)(Qz)] — PaAQq (4). Mientras que la
proposicion P, AQ, — (Vx)(P; AQ.) (5) es cierta de acuerdo con la regla de inferencia de la
generalizacion del universal, por silogismo hipotético (transitividad) entre los condicionales
hallados (4) y (5) se sigue que

(V) (Pr) A (V2)(Qz)] — (V) (Pe A Qz) (6)

Por conjuncion y definicién de bicondicional entre las implicaciones obtenidas en (3) y (6)
se concluye que [(Va)(Py) A (V2)(Qgz)] < (V2)(Pr A Q).

Por al axioma de adjuncién de la logica proposicional y por el teorema de conmutatividad
las proposiciones P, — P,V Q. v Q. — P, V Q. son verdaderas, que al hacer uso de la
distribucion del universal respecto de la implicacion se tienen los condicionales (Vz)(Py) —
(V) (Pr V Q) vy (V2)(Qz) — (V) (P V Qz), que por la adiciéon entre implicaciones resulta

[(Va)(Pr) v (V2)(Qz)] — [(V2) (P V Q2) V (Vi) (Pe V Q)]

De donde se sigue que [(Vx)(Py) V (V2)(Qz)] — (Vx)(Pr V Q) esto por la propiedad de
idempotencia y asi concluir la demostraciéon.

Ejemplo 3.12. Para las funciones proposicionales Py : 23 < 0 y Qg : 22 > 0, la conjuncion
estd dada por P, N Q. : 23 < 0 Axz3 > 0, cuantificando cada una de estas funciones
proposicionales en términos del existencial resulta (3z)(x3 < 0) (proposicion verdadera),
(3x)(z® > 0) (proposicion verdadera) y (3z)(x> < 0 Az > 0) la cual es una proposicion
falsa ya que mingin nidmero real puede ser a la vez positivo y negativo. Por lo tanto el
condicional

[(3z)(z® < 0) A Bz) (2 > 0)] — Fz)(z® < 0 A2 > 0)

es falso debido a que el antecedente es verdadero pero el consecuente es falso, mientras que
el condicional

(3z) (23 < 0N 23 > 0) — (3z)(z® < 0) A (Fz)(z® > 0)]
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es verdadero por tener antecedente falso y consecuente verdadero. En términos de Py y Qg
resulta que [(3x)(Pr) A (32)(Qz)] — (3x)(Pe AQg) no siempre es una proposicion verdadera,
mientras que el condicional (3z)(Py A Q) — [(3z)(Pr) A (32)(Qz)] es siempre verdadero
como se demuestra en el siguiente teorema.

Teorema 3.2. Propiedades del cuantificador existencial Sean P, y Q. funciones
proposicionales entonces

1. (Fz)(~ (~ P,)) < (Fx)(Py) es una proposicion verdadera.

2. (Ax)(Py V Qz) <« (F)(Py) V (3x)(Qz) es una proposicion verdadera.
3. (Fx)(Py A Qz) — (F)(Py) A (3x)(Qz) es una proposicion verdadera.
4. (3x)(CV Py) < CV (3x)(Py) es una proposicion verdadera.

Demostracion [Afirmacion-Razon|

1. (Va)(~ (~ (~ Pp))) < (Yx)(~ Py ... Teoremas 3.1 literal 1

2. ~ (V) (~ (~ (~ Py))) <o~ (V) (~ Py) ... Teorema de equivalencia en 1
3. (3x)(~ (~ Py)) < (3x)(Py) ... Def del existencial en 2 (ver 3.1)
4. (Va)(~ PN\ ~ Qy) — (Vx)(~ Py) A (V) (~ Q) ... Teorema 3.1 literal 2

5. ~ (Vx)(~ PN ~ Qg) <~ [(Vz)(~ Py) N (Vx)(~ Qz)] ... Teorema de equivalencia en 4
6. ~ (Va)(~ (Pr V Qy)) <~ (Vx)(~ Py)V ~ (Vz)(~ Q) ...Ley D’Morgan en 5

7. (F2)(Pp V Qz) <« (Fz)(Pr) V (V2)(Qx) ... Definicion del existencial en 6
8. (Vz)(~ Py) V (V) (~ Q) — (Va)(~ PpV ~ Q) ... Teorema 3.1 literal 3

9. ~ (Vo)(~ PpV ~ Qy) —~ [(Vz)(~ Py) V (Vx)(~ Qz)] ...Contrarreciproco en 8

10. ~ (V) (~ (Py A Qy)) —~ (Vx)(~ Py) A (Vz)(~ Q) ...Ley D’Morgan en 9

11. (3x) (P A Qg) — (3x)(Pyp) A (3z)(Qz) ... Definicion del existencial en 10

Teorema 3.3. Negacion del cuantiﬁcador existencial Si P, es una funcion proposi-
cional entonces ~ (3x)(Py) < (Vx)(~ Py)

Demostracion [Prosa|

Con base en la definicion del cuantificador existencial (ver 3.1) se tiene la equivalencia
(3x)(Py) <>~ (Vz)(~ P,), haciendo uso del teorema de equivalencia 2.9 se sigue que los
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contrarios son equivalentes, es decir, ~ (Jz)(P;) <~ [~ (Vz)(~ P;)] y asi por la doble
).

negacion se concluye que ~ (3z)(Py) < (Vx)(~ Py 0
Ejemplo 3.13. Consideremos la proposicion (3z)(z3 = —8 A x < 0), la cual es verdadera
ya que x = —2 satisface la conjuncion 3 = —8 Ax < 0. Si negamos la proposicion se tiene

~ (3z)(z® = =8 Az < 0) que por el teorema 3.3 resulta (Vx)[~ (23 = —8 Az < 0)], por
medio de la propiedad D’Morgan se tiene la expresion

(Vo) (z® # -8V £ 0) — (Vz)(z® # -8V z > 0)

Proposicion que es verdadera siempre y cuando © # —2.

Ejemplo 3.14. Si se quiere negar la proposicion (3x)(Py V Qz) — (Jy)(Ry V Qy) es nece-
sario hacer uso de las propiedades de la logica proposicional donde

1.~ [(3z)(Pr V Qz) — (3y)(Ry V Qy)] ... Negacion de la proposicion
2. (3x)(Py vV Qz)A ~ (Fy)(Ry V Qy) ... Ley D’Morgan en 1

3. (Fx)(Pr VvV Qz) N (Vy)[~ (Ry V Qy)] ... Teorema 3.3 en 2

4. (Fx)(Pp V Qz) A (Vy)[~ RyA ~ Qy) ... Ley D’Morgan en 3

Teorema 3.4. Negacion del cuantificador Universal Si P, es una funcion proposi-
cional entonces ~ (Vx)(Py) < (3x)(~ Py)

Demostracion [Prosa|

La definicion del cuantificador existencial implica que (3x)(~ Py) <~ (Vz)(~ (~ Py)) (1).
Por las propiedades del cuantificador universal (ver teorema 3.1) referente a la doble ne-
gacion se tiene que (Vz)(~ (~ P;)) < (Vz)(P.), por lo que sus contrarios también son
equivalentes ~ (Vz)(~ (~ P,)) <>~ (Vz)(P,) (2); puesto que el bicondicional es transitivo
entonces entre las expresiones (1) y (2) se sigue que (3z)(~ P,) <~ (Vx)(P,) de donde sus
reciprocos son equivalentes también (ver teorema 2.9) y asi ~ (Vz)(Py) < (3z)(~ P;). 0O

Ejemplo 3.15. Para la proposicion (Vz)(x? > 1 — |z| > 1), la cual es cierta, su negacion
estd representada por

~ (V2)(@? 2= J2] 2 1) o ()~ (2% 2 1 — [a] 2 1)]

Como la negacion del condicional P — @ es equivalente a PN ~ @ de acuerdo con la
propiedad de D’Morgan entonces la negacion de la proposicion dada equivale a

@) (@? > 1A |z] # 1) & Ga)(a® > 1Az < 1)

Proposicion que no es cierta para todo x en los reales.
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Ejemplo 3.16. Veamos que de la proposicion (Vx)(Py A Q) — (3x)(Ty) se deduce la
proposicion (3z)(Py — (Qr — Ty))

1. (Vo) (Pp A Qy) — (Fx)(T%) ... Hipotesis

2. ~ (V) (Py AN Qg) V (F2)(Ty) ... Definicion de condicional en 1

3. (Fz)[~ (Py AN Qg)] Vv (3x)(Ty) ... Negacion del universal en 2

4. (3x)[~ PpV ~ Qz)] V (3x)(Ty) ... Ley D’Morgan en 3

5. (Elx)[( PV~ Q) V Ty ... Propiedades del existencial (ver 3.2) en /
6. (Fz)[~ PV (~ Qy VTy)] ... Asociativa en 5

7. (EIQ:)[P — (Qm — T,)] ... Definicion de condicional en 6

Ejemplo 3.17. Para determinar si la proposicion (Vx)((Py V Qz) — P, se hace uso de
la propiedad de ejemplificacion existencial para tener (P, V Qq) — P, (1), es decir, (a/x).
En la proposicion compuesta (1) se tienen dos proposiciones simples P, y Q, para lo que
existen cuatro posibilidades logicas, en la siguiente tabla se ilustra este hecho

FalV|Qu| | P
vivivv]v
VIVIF| V|V
F|V|V|F|F
F|F|F|V|F

Por tanto la proposicion (P, V Qq) — P, es una indeterminacion, asi como la proposicion

(V2)((Py V Q) — Py).

Ejemplo 3.18. Considérese la proposicion ~ (Vx)[((PyVQz)N ~ Qz) — Pr), antes de hac-
er la ejemplificacion, es necesario que la negacion que antecede al cuantificador no aparezca,
para ello se hace uso del teorema de la negacion del cuantificador universal 3.4, por lo que
se obtiene la equivalente

(Fz)[~ (P V Qz)A ~ Qz) — Po)] & (32)[((Pr V Qo)A ~ Qu)A\ ~ Py

En el lado derecho de la anterior equivalencia se hizo uso de la ley D’Morgan, si se ejempli-
fica respecto del existencial haciendo (a/x) resulta la proposicion ((PyV Qu)A ~ Qa)\ ~ P,
generando asi cuatro posibilidades logicas

Pl V]Qa| M~ Qu|[ A |~ Py
vivlvI[r] F [F[ F
viviF|vl v |F|| F
F\VIVI|Fl F |F| Vv
FI\F|F|F| Vv |F| V
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Asi las proposiciones ((Py V Qa) — Qa)V ~ Qa y ~ (Va)[((Pr V Qz) — Qz) N Q) son

contradicciones.

Ejemplo 3.19. En los reales la propiedad conmutativa para la suma ilustra que indepen-
diente de los numeros reales x e y que se eligan se sigue la igualdad © + 1y = y + x, lo
cual se ilustra en términos de cuantificadores como (Vx)(Vy)(x +y = y + x) propiedad
que es cierta independiente en el orden en que se tomen los cuantificadores universales, es
decir, también es cierto que (Vy)(Vx)(x +y = y+x), en cuyo caso la funcion proposicional
Ppy:x+y=y+z novaria y se escribe (Va)(Vy)(Ppy) < (Vy)(Vz)(Pry).

Ejemplo 3.20. Sea x = —1 entonces para dicho nimero existe un real z tal que x>+ 2> = 0,
en efecto, si se hace z = 1 la desigualdad se satisface, en términos de los cuantificadores
se escribe como (3x)(3z)(x® + 22 = 0). Si por el contrario se inicia suponiendo que z = 1,
eziste v = —1 tal que 2® + 2% = 0, es por ello que la proposicion (3z)(3x)(z® + 23 = 0) es
verdadera también, lo que muestra que los cuantificadores existenciales pueden conmutar

(32)(32)(Prz) = (32)(32) (Prz)

Donde P, : 2> + 23 = 0 es la funcion proposicional ligada a las variables x e z.

Los ejemplos 3.19 y 3.20 permiten garantizar que los operadores universales y existenciales
pueden cambiar respecto de una funcién proposicional que esté ligada a las variables x e y;
esto se enuncia en el siguiente teorema 3.6.

Teorema 3.5. Conmutatividad Si Py, una funcion proposicional que depende de las
variables © e y entonces

1. (Yy)(Pry) — Pup ... Ejemplificacion en y (b/y)

2. (Vo)(Vy)(Pry) — (V) (Pyp) ... Distributiva del V en la implicacion en 1
3. (Vx)(Pyp) — Py ... Ejemplificacion en z (a/z)

4. (Va)(Yy)(Pyry) — Pap ... Transitividad entre 2 y 3

5. Py — (V)(Pry) ... Generalizacion del V

6. (Vy)(Pay) — (Vy)(Va)(Pry) ... Distribucion del V en la implicacién en 5
7. Py — (Vy)(Pay) ... Generalizacion del V

8. Py — (Yy) (Vo) (Pry) ... Transitividad entre 6 y 7
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9. (Va)(Vy)(Pry) — (Yy) (VT )(Puy) ... Transitividad entre 4 y 8

10. (Vy) (V&) (Pry) — (Vo) (YY) (Pry) ... Procedimiento anélogo

11. (Vz)(Vy)(Pry) < (Yy)(Vz)(Pyy) ... Conjuncion y definiciéon de bicondicional

entre 9 y 10

2. (Vz)(Vy)(~ Py ) (Vy)(Vz)(~ Pyy) ... Por el literal 1

13. ~ (V2)(Vy)(~ Ppy) <~ (Vy) (V) (~ Pyy) ... Teorema de equivalencia en 12
(Fz) [~ (Vy)(~ Pypy)] < Fy)[~ (Vz)(~ Pyy)] ... Negacion del universal en 13

15. (3z)(3y) [~ (~ Pry)] < y)(Fz)[~ (~ Pry)] ... Negacion del universal en 14

16. (3x)(Fy)(Pry) < (Fy)(Fz)(Pry) ... Doble negacion en 15

Ejemplo 3.21. Sea x un nimero real, entonces para dicho nimero existe un unico nimero
y tal que x +y = x (dendtese Py, esta funcion proposicional, es decir, Py : x +y = ),
en efecto, dicho nimero y es el cero, puesto que x + 0 = x esto para todo x, esto se escribe
por medio de los cuantificadores como (Vx)(3y)(z +y = y), ndtese que esto es equivalente
a decir que existe un y tal que para todos los x se cumple T + y = x que en términos de la
logica cuantificacional se escribe como (Jy)(Vx)(z+y = x). Esta situacion induce a pensar
que la equivalencia (Vx)(Jy)(Pry) « (y)(Va)(Pyy) es cierta; sin embargo consideremos
otra situacion: Para cada x real existe otro real y tal que x +y = 0 donde y es el inverso
aditivo se escribe (Vx)(Jy)(z +y = 0), sin embargo, la expresion (Jy)(Vx)(x+vy = 0) no es
cierta, ya que no existe ningun real y tal que x +y = 0 para todos los x, ast el condicional
(V) (Fy) (Pry) — (Fy) (V) (Pyy) no siempre es verdadero.

Por medio del ejemplo 3.21 se enuncia el teorema 3.6, para el cual se presenta que el inter-
cambio de cuantificadores existencial universal solo puede hacerse en este orden y no entre
un cuantificador universal y un existencial.

Teorema 3.6. Intercambio de los cuantificadores Si Py es una funcion proposicional
que depende de las variables © e y entonces

(32)(Vy) (Pry) — (Vy)(32)(Puy)

Demostracion [Prosa|

De acuerdo con la ejemplificacion del cuantificador universal se tiene que (Vy)(Pyy) — Pup
donde x es una variable libre y (b/y), al aplica la regla de inferencia de la distribu-
cion del existencial respecto del condicional resulta (3z)(Vy)(Pyy) — (32)(Pyp) (1), como
(3x)(Pup) — Pap (2) por la ejemplificacion existencial con (a/z) entonces por transitividad
entre (1) y (2) se obtiene (3z)(Vy)(Pry) — Pap (3).
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Por la generalizacion existencial respecto de la variable x, se escribe Pyy — (32)(Pyy), que
por la distributiva del universal en el condicional resulta (Vy)(Pay) — (Vy)(32)(Pry) (4), ya
que Py, — (Vy)(Pay) por la generalizacién universal respecto de y entonces por transitividad
con (4), Poy — (Vy)(3x)(Pyy), v asi por transitividad con el condicional obtenido en (3)

(B) (V) (Poy) — (Vy)(F2) (Py)

Lo que concluye la demostraciéon.

3.3. Inferencias

De acuerdo con el conjunto de premisas o hipétesis que se presentan en cada caso deducir
la tesis, para ello hacer uso de los diferentes elementos del sistema formal de la logica
cuantificacional o proposicional.

Hipotesis ‘ Conclusion
(Vz)((r <4AN4<5)—x<5)
(V2) (-4 < —z = 2<4) 3<5
4<5
—4< -3
1. (Vo)((zr <4AN4<5)—x<5b) ... Hipotesis
2. (Va)(-4< —z e 2<4) ... Hipotesis
3.4<5 ... Hipotesis
4. -4 < -3 ... Hipotesis
5.(3<4MN4<5)—3<5 ...(3/z)en 1
6. 4<-3<3<4 ... (3/2) en 2
7.(-4<-3—-3<4)AN(3<4— —4<-3) ...Definicion de bicondicional en 6
8. -4<-3—-3<14 ... Simplificacion en 7
9.3 <4 ... Modus ponendo ponens entre 4 y 8
10. 3<4 N4 <) ... Conjuncion entre 9 y 3
11.3 <5 ... Modus ponendo ponens entre 5 y 10
Hipotesis ‘ Conclusion ‘
(TP AP) = Poy) | Ps— [P = Py

(Vy) (Vw) ((PyA ~ Py) =~ Pyy)

1. (V2)(Vy)((P: A Py) — Py) ... Hipotesis
2. (Vy)(Yw)((PyA ~ Py) —~ Pyy) ... Hipotesis
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3. (Ps\P_3) — P5(_3)

4. (P5/\ ~ P,3) —rr P5(_3)
5. ~ (P5 AN P_g) V P5(,3)

6. (~ PsV ~ P_3)V P5(,3)
7.~ P5V (~ P_3V P5_3))
8.~ P5V (P-3g — P5_3))

9. ~ (P5A ~ P_g)\/ ~ P5(,3)

... (5/2)(—=3/y) en 2
. (5/y)(—3/w) en 2
.. Definicién de condicional en 3
..D’Morgan en 5
.. Asociativa en 6
.. Definicion de condicional en 7

.. Definicion de condicional en 4

10. (~ PsV P_3)V ~ P5(_3) ..D’Morgan y doble negacién en 9
11. ~ P5 V (P_3V ~ P5( 3)) .. Asociativa en 10
12. ~ P5 V (~ P5_3) V P_3) .. Conmutativa en 11
13. ~ P5 V (Ps(_3) — P-3) .. Definicién de condicional en 12
4. [~ P;V (P_3 — P5 )| N[~ P5V (Ps_3y — P-3)] ...Conjuncion entre 8 y 11
15. ~ P5 V [(P-3 — Ps(_3)) A (P5(—3) — P-3)] .. Distributiva en 14
16. ~ P5 V [P_3 < P5(_3)] .. Definicién de bicondicional en 15
Hipotesis ‘ Conclusion
(Vy)(V2)((Oy A Oz) — Eyyz)
(V2)((Op >~ Dy) Es 7
(Vw) (O V Ey)
~ DA\ ~ Ej5
1. (Vy)(V2)((Oy AN O;) — Eyy ) .. Hipotesis
2. (V2)((Oy <=~ Dy) .. Hipotesis
3. (Yw) (O V Ey) .. Hipotesis
4. ~ D7\ ~ Es ... Hipotesis
5. (05 N O7) — Esyq7 ...(5/y)(7/z) en 1
6. O7 <~ Dy ... (7/z) en 2
7. 05V Ej ..(5/w) en 3
8. (O7 =~ D7) N (~ D7 — Or) .. Definicion de bicondicional en 6
9. ~ D7 — O7 .. Simplificacion en 8
10. ~ Dr .. Simplificacion en 4
11. Oy .. Modus ponendo ponens entre 9 y 10
12. ~ FEj5 .. Simplificacién en 4
13. O3 .. Modus tolendo ponens entre 7 y 12
14. O5 N O7 .. Conjuncioén entre 13 y 11
15. Es47 .. Modus ponendo ponens entre 5y 15



3.3 Inferencias

91

Hipotesis ‘ Conclusion
(Vo) (~ Py — (~ Ny — 2 =0))
~ N5_5 5—-5=0
(V) > 0 = P,)
5—5%0
1. (Vx)(~ Py — (~ Ny — 2 =0)) .. Hipotesis
2.~ N5_;5 .. Hipotesis
3. Vy)(y >0« P .. Hipotesis
4.5—-=5%0 ... Hipdtesis
5.~ P55 — (~Ns_5 —>5-5=0) .(5—=5/z)en 1
6.5—5>0 Ps5_5 .(5—=5/y) en 3
7.15-=5>0— Ps_5|\[Ps—5 = 5—5>0] ...Definicion de bicondicional en 6
8. Ps_5 —-5—-5>0 .. Simplificacién en 7
9. ~ P5_5 .. Modus tolendo tolens entre 4 y 8
10. ~ N5s_5 = 5—-5=0 .. Modus ponendo ponens entre 5 y 9
11.5-5=0 .. Modus ponendo ponens entre 2 y 10
Hipotesis ‘ Conclusion ‘

© 0 NS U W N
2
)
Q
|
2
=
Q

—
<
N

a

11. K,
12. Qu AN K,
13. (32)(Qu N Ko)

(Vz)(Ry A Zy)

(Bx)(~ Qz =~ Re) | (F2)(Qu N Ky)

(32)(Zy — Ky)

.. Hipotesis
.. Hipotesis
.. Hipotesis
..(a/z)enl
...(a/z) en 2
..(a/x) en 3
.. Simplificacion en 4
.. Modus tolendo tolens entre 5y 7
.. Doble negacion en 8
.. Simplificacién en 4
.. Modus ponendo ponens entre 6 y 11
.. Conjuncién entre 9 y 11

.. Generalizacion existencial en 12



92

Logica Cuantificacional

© 0 N U WD

STV Qa

10. T V (Qq VvV M,)

11, (32)(Tp V (Qz V M)

1
2
3
4
d.
6
7
8
9

10

11.
12.

14
15
16

- (V) (P V (Qu A Rz))
o (V2) (~ S ~ T

- (32)(Sy =~ (PsV Qy))
- (F2) [~ (~ SN ~ Ty

P,V (Qa A Ra))
~ (~ Sah ~ T)
Sa =~ (Pa V Qa)
Sa VT,

A(PaVQa)N(PaV Ry)

PV Qa

~ S,

1,

- (32)(Tz)

- (F2)(~ (~ Tz))
-~ (Va) (~ T)

Conclusion ‘

(Vx)(Ry V Zy)
(Vz)(~ Ty —~ Ry) | B2)(Ty V (Qz V My))
(3z)(~ Zz V Qz)

.. Hipotesis
.. Hipotesis
... Hipotesis
...(a/z)en 1
...(a/z) en 2
..(a/z) en 3
.. Contrarreciproco y doble negaciéon en 5
.. Definicion de condicional en 6
.. Método de casos entre 4, 7 y 8
.. Axioma de adjuncién M, y asociativa en 9

.. Generalizacion existencial en 10

‘ Conclusion ‘

(Vo) (Pr V (Qu N Ry))
~ (V) (~ SeN ~T,)

(32)(Sy =~ (P V Qx))

~ (Vo) (~ Tr)

.. Hipotesis
.. Hipotesis
.. Hipotesis
... Negacion del universal (ver 3.4) en 2
...(a/x)en 1
...(a/z)en 4
..(a/x) en 3
.. Ley D’Morgan y Doble negacién en 7
.. Distributiva en 5
.. Simplificacion en 10
.. Modus tolendo tolens entre 7 y 11
.. Modus tolendo ponens entre 9 y 12
.. Generalizacion del existencial en 13
.. Teorema 3.1 en 14

.. Negacién del universal en 15
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3.4. Ejercicios

1. Por medio de los signos del alfabeto de la l6gica cuantificacional simbolizar los siguien-
tes enunciados que estan dados en el lenguaje natural. Ademas determine el valor de
verdad de dichas proposiciones, en el caso de ser falsas exhiba un contraejemplo

a) Existe un nimero primo que es impar. b) Ningtin nimero divisible por 3 termina
en 3 exceptuando el 3.

c¢) Todos los hexégonos tiene 9 diagonales. d) Todos los ntimeros que terminan en 3

son primos.

e) Ningtn namero divide al 19. f) Para todos los naturales, la diferencia es
otro natural.

g) Ningtan pentagono es convexo. h ) Todos los nimeros racionales son natu-
rales.

2. Determine el valor de verdad de las siguientes proposiciones, en el caso de ser falsas
exhiba un contraejemplo (caso que no satisface el enunciado)

a) Todos los niimeros racionales son naturales.
b)

¢) Ningtn nimero divisible por 3 termina en 3 exceptuando el 3.
)

d

Existe un niimero primo que es impar.

Todos los nimeros que terminan en 3 son primos. item Todos los hexégonos tiene
9 diagonales.

3. Niegue los siguientes enunciados haciendo uso de las propiedades de la légica cuan-

tificacional.

a) (Vo)[(Vy)(Poy — Ray)] b) (Vo)[(Fy)(z +y = 2¥)]

)~ (y)(Ra — P) d) (Vz)(~ PpV ~ Q) A (32)(Ry)

e) (Va)((z =3 N2> £ 9) =z #4) £) (Fy)(Ay — (Vo)(Re A Py))

g) (V&)[(Vy) (PaoyA ~ Ray)] h) (Va)(z > 2) — (Fy)(z +y = 2y)]
i)~ (Vy)(~ Ry < F) i) (Fz)(~ Py — Q) A (F2)(Ry V Sy)
k) (Vz)(x =3A(2° =9 — a #4)) D ()P — (V) [(Vy)(Qay)]]

4. Sea A = {—4,—1,1,2,4} el dominio de referencia. Determine el valor de verdad de
cada uno de los enunciados que se presentan a continuacién, en el caso de ser falsos
muestre el contraejemplo.

a) (Vo) (Vy)(z +y < 8) b) ~ (3z)(2® =1)

c) (V)(Fy)(2* < y?) d) (Va)[~ (Fy) (@ + 1 =y?)]
¢) (32)(Jy)(a* —y = 0) £) (Vo) (vy)((=1)* + (=1)¥) =
g) (Vz)(|z| = —x) h) (V2)(3y)(z —y = (-1)%)
i) (Vo) (—14 < 2y < 16) i) (Vo) (3y) (= = y?)

0
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5. Determine si las siguientes proposiciones son tautologias, contradicciones o indeter-

minaciones

a) (Vx)((Px —n Px) —n~ Py)

c) ~ (V2)[(Pe = Qu) A Pr) — Qql

b) (Vo)[(Pe = Qu)A ~ Qz) =~ Py
d) ~ Fz)(~ (PeA ~ Fr))

6. Inferencias: Hacer uso de los axiomas, reglas de inferencia y teoremas del sistema for-
mal de la logica proposicional y de la logica cuantificacional para deducir los siguientes

teoremas.

Hipotesis ‘Conclusi()n H H Hipotesis ‘ Conclusion
(Vz)(Vy)((z > 0Ny <0) — Nyjy) (V) (Pr — Ra)

(Vu) (Vo) ((u < 0 — Nyjy) — Po) Py (Va)(Pr — Qa) (Fz)(~ Pr)
7>0 (Fz)(~ QzV ~ Ry)

(V) (Vy) (~ May V Sye) ~ (Fz)(Re — P2)

B, My — Pee (Elx)(w QI)
(Vu)(V2)(Sze — (B, — Pye)) (F2)(Qx N Ry — Py)

(V2)(3y)(Pe — Qu V Ry) (V) (~ Sy —r~ Ty)

~ (Vy)(Qy) (32)(R.) (Va)(Ty < Se)
(V) (Pr) (V) (T%)

(Va)(~ Py — (Qz —~ Ry)) (V2)((Pr — Qz) V Ry)

(Vy)(Ry —~ Fy) ~ Qa (32)(Re — Sz) (37)(Qx)

(V)(

(Vx)(~ Sy V Py —~ (~ Ry))
~ S,

7. Demuestre las siguientes propiedades haciendo uso de la ejemplificacion y genera-
lizacion de la logica cuantificacional.

a) (Vo) (Pr —~ Py) — (Vz)(~ Py)
b) Si (Vz)[(P, — Ry) A (Qr — R,)] entonces (Va)((Pr V Q) — Ry)

8. Por medio de las propiedades de la logica cuantificacional y de la logica proposicional,

demuestre que

a) Si~ (Vz)[Py — (32)(QzV ~ P,)] entonces (Ix

)(V)(~ Qz)

(
b) Si (Vz)(Py A Q) — (3x)(T,) entonces (Fz)(Py — (Qr — T%))
¢) Si~ (32)((Vy)(Ray) — (y)(Ray V Szy)) entonces (V) (Vy)(~ Siy)



Capitulo 4

Métodos de Demostracion

4.1. Introduccion

En el apéndice A se hace un resumen de los sistemas numéricos (naturales, enteros, racionales,
irracionales, reales y complejos) y las operaciones usuales que se definen en éstos, debido
a esto se sugiere que se haga una lectura de dicho apéndice para mejorar la comprensiéon
de los ejemplos y ejercicios que se proponen en este capitulo, asi como la justificaciéon en
las demostraciones. Los métodos de demostracion son herramientas que facilitan las deduc-
cion o demostraciones de teoremas, el uso de estos métodos esté supeditado a los objetos
matematicos que se enuncian en el teorema, aunque algunos de ellos se pueden demostrar
por métodos diferentes.

4.2. Meétodo Directo

El método directo se base en las proposiciones del tipo P — @, en dicho caso la P corres-
ponde a la hipdtesis y QQ a la tesis, para ello se inicia suponiendo que la hipotesis es verdadera
y tras una serie de cadenas logicas (axiomas, definiciones, teoremas, corolarios, lemas) se
concluye @, lo cual es suficiente para concluir que P — @ es verdadera de acuerdo con la
tabla de verdad del condicional.

Es importante tener en cuenta las siguientes anotaciones que hace Alberto Jaramillo (ver
[11]) acerca del método de demostracion directo

1. De forma intuitiva podemos fundamentar la validez de este método en el hecho de que
la implicacién es falsa tinicamente en el caso en el cual partiendo de un antecedente
verdadero se llegara a una conclusion falsa; éste es precisamente el caso que queda
descartado cuando asumiendo la verdad del antecedente concluimos la verdad del
consecuente. Como con antecedente falso la implicacion es siempre verdadera no se
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requiere ninguna otra consideracion.

2. Es fundamental tener presente que al aplicar este método no se esta determinando
la validez absoluta del consecuente (), sino su validez relativa al supuesto de que el
antecedente P es verdadero. En consecuencia, lo que se valida absolutamente es que
P — @ es verdadero.

3. En una misma demostracién podemos aplicar reiteradamente el método directo si la
conclusion del primer condicional es a su vez otro condicional y asi sucesivamente.

4.2.1. Ejemplos de légica proposicional

En los siguientes ejemplos se aplica el método directo para proposiciones compuestas que
tienen asociado un condicional o un bicondicional, en este segundo caso, P < @, el método
directo se aplica en dos sentidos, es decir, de izquierda a derecha P — () y de derecha a
izquierda ) — P. Se requiere el uso de las propiedades demostradas para la logica proposi-
cional.

Ejemplo 4.1. [(P — Q) A P] — (P A Q) es una proposicion verdadera.

Demostraciéon [Método Directo, Prosa|

Para la aplicacion del método directo, se supone que la proposicion (P — Q) A P es ver-
dadera y constituye la hipotesis. Si se hace uso de la simplificaciéon resulta que P — @ y
P son proposiciones verdaderas, que por el modus ponendo ponens se sigue que () es una
proposicién verdadera; como P y ) son verdaderas entonces por conjuncion P A () es ver-
dadero, el cual era el proposito de la demostracion. El método directo permite argumentar
que [(P — Q) A P] — (P A @) es una proposicion verdadera.

Ejemplo 4.2. ([P - R)A (P — Q) A (~ QV ~ R)] —~ P es una proposicion verdadera.

Demostracion [Método Directo, Afirmacion-Razon]

LL(P>RANP—-QAN(~QV~R) ... Hipotesis

2.P—R ... Simplificacion en 1
3.P—Q ... Simplificacién en 1

4. ~QV~R ... Simplificacién en 1

5. ~RV ~(Q ... Conmutativa en 4
6.~R—~P ... Contrarreciproco en 2
7.~Q —~P ... Contrarreciproco en 3
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8. (~RV~Q)— (~PV~P) ... Adicion entre implicaciones entre 6 y 7
9.~PV~P ... Modus ponendo ponens entre 5y 8

10. ~ P ... Idempotencia en 9

1L [([P=>RANP—-QAN(~QV~R)]—-~P .. .Método directo entre 1 y 10

Ejemplo 4.3. [P — (Q — R)] < [(P AN Q) — R] es una proposicion verdadera.

Demostracion [Método Directo, Afirmacion-Razon|

1.P—-(Q —R) ... Hipotesis

2.~PV(~QVR) ... Definicion de condicional en 1
o 3.(~PV~Q)VR ... Asociativa en 2

4. ~(PANQ)VR ...D‘Morgan en 3

5. (PANQ)— R ... Definicién de condicional en 4

6. [P—(Q —R)]—[(PANQ)— R] ... Método directo entre 1y 5

7. (PANQ)— R ... Hipotesis

8. ~(PANQ)VR ... Definicion de condicional en 1
“ 9. (~PV~Q)VR ...D‘Morgan en 8

10. ~PV(~QVR) ... Asociativa en 9

11. P - (Q — R) ... Definicién de condicional en 10

12. ([PANQ) — R] = [P — (Q — R)] ... Método directo entre 7y 11

El ejemplo 4.3 reviste importancia cuando en los enunciados de los teoremas existen dos
condicionales P — (@ — R), para ello se escribe los dos antecedentes: Py () como hipote-
sis, P A @, y debe demostrarse solo el segundo consecuente R. En el siguiente ejemplo se
hace uso de este resultado, aunque no es el tnico camino de solucion.

Ejemplo 4.4. (P — Q) — [(Q — R) — (P — R)] es una proposicion verdadera.

Demostracion [Método Directo, Prosa]

El enunciado a demostrar tiene la estructura del ejemplo 4.3, es por ello que la hipotesis
se puede escribir como (P — Q) A (Q — R), que por el teorema de transitiva resulta el
condicional P — R el cual era el consecuente a deducir, es por ello que

(P—Q) = [(Q—R)— (P —R)

es una proposicion verdadera.
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4.2.2. Ejemplos de naimeros pares e impares
La adicién y multiplicaciéon entre niimeros pares es otro ntumero par, es por ello que el con-
junto Z, de ntimeros pares es cerrado bajo estas operaciones, a continuacion se demuestran

ambos resultados. Los impares por su parte son solo cerrados bajo la operaciéon de multi-
plicacién, ya que la suma entre dos impares es un niimero par.

Ejemplo 4.5. Si m y n son enteros pares entonces m +n y m -n son enteros pares.

Demostracion [Método Directo, Afirmacion-Razon]

1. m es par ... Hipotesis

2. n es par ... Hipotesis

3. Existe k € Z tal que m = 2k ... Definicion de niimero par en 1

4. Existe r € Z tal que n = 2r ... Definicién de niimero par en 2

5. m+n=2k+2r ...Sumando las igualdades dadas en 3 y 4
6. m+n=2(k+r) ... Propiedad distributiva en 5
7.m+4+n=2zconze€Zyk+r==z ... Propiedad clausurativa en 6

8. m +n es par ... Definicion de niimero par en 7
9.m-n=(2k)-(2r) ... Multiplicando las igualdades dadas en 3 y 4
10. m-n = 2[k - (2r)] ... Asociativa de la multiplicacion en 9
Il.m-n=2-tconteZyt=k-(2r) ... Clausurativa de la multiplicacion en 10
12. m -n es par ... Definicién de niimero par en 11

Ejemplo 4.6. Sim y n son nimeros impares entonces m —+n e€s par y m-n es impar.

Demostracion [Método Directo, Prosa|

Por hipétesis tanto m como n son impares, de alli que existen k y r enteros tales que
m=2k+1(1) yn=2r+1(2), sumando las expresiones (1) y (2) resulta

m+n=2k+1)+ (2r+1)

que al sumar términos semejantes se escribe m—+n = 2k+2r+2, con base en las propiedades
distributiva y clausurativa se tiene m+n = 2(k+r+1) = 2z donde z € Z ya que z = k+r+1,
es por ello que m + n es par. En el caso de multiplicar las igualdades (1) y (2) se obtiene
m-n = (2k + 1)(2r + 1) aplicando las diferentes propiedades en los enteros se tiene la
igualdad

m-n=4kr+2k+2r+1=22kr+k+r)+1
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Que al hacer uso de la propiedad clausurativa escribimos m-n = 2t + 1 donde t € Z, es por
ello que m - n es un nimero impar.

Siempre que un nimero es impar, su cuadrado y cubo son impares también, por ejemplo,
n = 7 produce n? = 49 y n® = 749 por que la multiplicaciéon de impares n?> = 7 -7 es
otro impar, asi cualquier potencia de un nimero impar es otro ntumero impar. Situacién
analoga resulta con los nimeros pares. En la siguiente tabla se resume esta situaciéon para
los ntimeros del 2 al 5.

[n]ln? [ n® [ ] n® |
2| 4] 8|16 32
31927 |81 243
416 | 64 | 256 | 1024
5

251251625 | 3125

Notese ademés que hay otras particularidades en la tabla, si n? es par entonces n es par
también, es decir, si la potencia tiene resultado par, la base debe ser par también. Esto
sucede con cualquiera de las potencias y con los niimeros impares también. A continuacion
se demuestran algunas de estas conclusiones.

Ejemplo 4.7. n? y n3 son impares siempre que n es impar.

Demostracion [Método Directo, Afirmacion-Razon]

1. n es impar ... Hipotesis

2. Existe k € Z tal que n = 2k + 1 ... Definicién de niimero impar en 1
3.n% = (2k +1)? ... Elevando al cuadrado en 2

4.n% = 4k? + 4k + 1 ... Trinomio cuadrado en 3

5.n% = 2(2k% + 2k) + 1 ... Distributiva en 4
6.n>=2t+1contcZ ... Clausurativa en 5

7. n? es impar ... Definicion de niimero impar en 6
8. n% = (2k+1)3 ... Elevando al cubo en 2

9.n3 = 8k3 4+ 12k% + 6k + 1 ... Binomio de Newton en 8

10. n® = 2(4k3 + 6k% + 3k) + 1 ... Distributiva en 9

1.0 =2 +1conpeZ ... Clausurativa en 10

12. n3 es impar ... Definicién de ntumero impar en 11
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4.2.3. Ejemplos de relacién de orden

La relacion de orden, denotada <, permite comparar dos niimeros, asi 3 < 5 indica que el
nimero 3 es menor que el 5, es decir, el tres estd a la izquierda del cinco. Por definicién
a < bsiy so6losi b— a es un namero positivo, esto es, si 0 < b — a, la situacion a < b
indica que a < b o a = b, para ello el axioma de adjuncién de la légica proposicional tiene
relevancia.

Analicemos algunas de las propiedades que cumplird la relaciéon de orden: Como 3 < 7'y
7 < 10 entonces se sigue que 3 < 10, es decir, la relaciéon de orden cumple la propiedad
transitiva. Por otro lado, como 3 < 7 entonces al multiplicar por —1 se tienen los ntimeros
—3 y —7 para los cuales se cumple que —3 > —7, es decir, cuando se multiplica por un
nimero negativo la desigualdad cambia.

Ejemplo 4.8. Transitividad. Sia < b y b < ¢ entonces a < ¢, con a,b, c reales.

Demostracion [Método Directo, Prosa]

Por hipotesis se tiene que a < by b < ¢, haciendo uso de la definicién de orden se sigue que
b—a>0(1l)yc—>b>0(2), por el axioma de orden se tiene que la suma de dos reales
positivos es otro real positivo es por ello que al sumar las expresiones (1) y (2) se tiene
(b —a) + (¢ — b) > 0 haciendo uso de las propiedades en los reales se logra ¢ —a > 0 y asi
concluir que a < c. 0

Ejemplo 4.9. Sean a,b reales tales que a < b

1. Sic > 0 entonces ac < be

2. Sic <0 entonces ac > be

Demostracion [Método Directo, Afirmacion-razon|

l.a<bd ... Hipotesis

2.0<c ... Hipotesis

3.0<b—a ... Definicién de orden en 1
4.0<(b—a)-c ... Axioma de orden entre 2 y 3
5.0 < bc—ac ... Distributiva en 4

6. ac < be ... Definicién de orden en 5

7.¢<0 ... Hipotesis
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8.0< —c ... Definicién de orden en 7
9.0<(b—a) (—c) ... Axioma de orden entre 3 y 8

10. 0 < ac — be ... Distributiva y ley de signos en 9
11. be < ac ... Definicion de orden en 10

El axioma de orden indica que tanto la suma como la multiplicacién de dos reales positivos
da como resultado otros real positivo; sin embargo, la multiplicacién de dos reales negativos
es un real positivo, esto es, tal conjunto no es cerrado bajo la multiplicacion. Si se elige
ahora un real positivo y un real negativo, el resultado es un real negativo como se demuestra
a continuacion.

Ejemplo 4.10. Sia >0 y b <0 entonces ab < 0.

Demostracion [Método Directo, Prosa|

Por las hipoétesis se tiene que a > 0y b < 0 en este segundo caso se hace uso de la definicion
de orden para tener que —b > 0, como la multiplicacién de dos reales positivos es otro real
positivo entonces a - (—b) > 0 que por la ley de signos equivale a —a - b > 0, de lo cual se
sigue que ab < 0 por la definicion de orden.

Ya que 2 < 11 y 3 < 4 entonces se puede multiplicar los elementos menores de esta desigual-
dad y los mayores para tener 2-3 < 11-4 que equivale a 6 < 44, esta expresion es verdadera.
Analicemos otro caso, —4 < 3 y —2 < 1, aplicando el mismo procedimiento resulta 8 < 3
que es contradictorio, asi que esta situacion es valida siempre que los niimeros sean positivos.

Ejemplo 4.11. Sean a,b,c,d reales positivos tales que a < b y ¢ < d entonces ac < bd.

Demostracion [Método Directo, Afirmacion-razon]

1. a, b, c,d reales positivos ... Hipotesis

2.a<b ... Hipotesis

3.c<d ... Hipotesis

4. ac < be ... Multiplicando por ¢ > 0 en 2
5. be < bd ... Multiplicando por b en 3

6. ac < bd ... Transitividad entre 4 y 5

Como consecuencia de la propiedad demostrada en el ejemplo anterior, corolario, se sigue
que si a < b entonces a? < b? siempre que tanto a como b sean positivos, ya que si no es el
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caso, —2 < 1 pero 4 £ 1, expresion que se lee “4 no es menor que 17.

Ejemplo 4.12. Sean a,b reales positivos. Si a < b entonces a? < b?.

Demostracion [Método Directo, Prosa]

De la hipotesis se tiene que a y b son ambos reales positivos, de alli que a > 0y b > 0,
como ademas a < b; (1) entonces en la desigualdad (1) se multiplica a ambos lados por a
por lo que la desigualdad se conserva (ejemplo 4.9) asi a-a < a-b (2), si por el contrario
se multiplica la desigualdad (1) por b, con b positivo se obtiene a-b < b-b (3). Haciendo
uso de la transitividad de la relacién de orden (ejemplo 4.8) entre las desigualdades (2) y
(3) se logra a-a < b-by asi por la definicion de potenciacién a? < b%.

4.2.4. Ejemplos de Divisibilidad

En estos ejemplos alusivos a la divisibilidad de ntimeros enteros es necesario aclarar que di-
visibilidad y division son términos distintos, escribir 4|8 y 4/8 = % son diferentes situaciones,
ya que la divisibilidad relaciona ntmeros enteros y la divisién produce nimeros. Ademas
es necesario recordar que en los enteros no se presenta la division, pero si la propiedad
cancelativa, esto es, si a-b = a - ¢ entonces b = ¢ siendo a # 0 y a, b, ¢ enteros.

Se sabe que 5[10 y a su vez 10|80, como 5 también divide al 80 entonces se puede inferir
que la divisibilidad cumple la propiedad transitiva, donde el 10 hace el enlace entre 5 y 80.
Por otro lado, 4|12 y 4|28 pero ademas el 4 divide también a la suma y a la resta entre 12
y 28, en efecto 12 4+28 =40 =4-10y 12 — 28 = —16 = 4 - (—4), pero también se puede
multiplicar 12 por 5 y 28 por 7 para tener 12-5+28-7 = 256 = 4- 64, es decir, el 4 divide a
cualquier combinacién lineal de 12 y 28. Los resultados de la transitividad y la combinacion
lineal se demuestran a continuacién.

Ejemplo 4.13. Transitividad Si m,n,p son enteros tales que m|n y n|p entonces m|p.

Demostraciéon [Método Directo, Prosa|

Por hipétesis tenemos que m|n y n|p, de acuerdo con la definiciéon de divisibilidad existen
enteros k y ki tales que n = mk (1) y p = nky (2) de forma respectiva. Al sustituir la igual-
dad (1) en la (2) resulta que p = (mk)k; = m(kk1) en este caso se hizo de la propiedad
asociativa, mientras que por la clausurativa, kkq es un entero, llamese t para lo que p = mt
y asi m|p que era el proposito de la prueba. g
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Ejemplo 4.14. Combinacion lineal Si m|n y m|p entonces m|(an + Bp), donde o y 3
son enteros y al término an + Bp se le llama combinacion lineal de n y p.

Demostracion [Método directo, Afirmacion-razon|

1. m|n ... Hipotesis

2. mlp ... Hipotesis

3. Existe k € Z tal que n = mk ... Definiciéon de divisibilidad en 1
4. Existe k1 € Z tal que p = mk; ... Definicién de divisibilidad en 2
5. an = a(mk) ... Multiplicando por « en 3

6. Bp = B(mky) ... Multiplicando por « en 4

7. an+ Bp = a(mk) + S(mk) ... Sumando las expresiones 5y 6

8. an + fp = mlak + Bki1] ... Propiedades de los enteros en 7
9.an+ PBp=mtcont €Z ... Clausurativa en 8

10. m|(an + Bp) ... Definicion de divisibilidad en 9

Ejemplo 4.15. Si m|n y p|q entonces mpng donde m,n,p,q son enteros.

Demostracion [Método Directo, Prosa|

Debido a que m|n y p|q por hipotesis entonces existen k y ki en los enteros para los que
n = mk y q = pky si se multiplican ambas igualdades término por término tenemos ng =
(mk)(pk1), aplicando las propiedades asociativa y conmutativa se obtiene las igualdades

ng = m(kp)k1 = m(pk)k1 = (mp)(kk1)

Debido a que k y k1 son nimeros enteros entonces kk; es otro entero llamese ¢ por lo que
ng = (mp)t y asi mp|ng de acuerdo con la definicion de divisibilidad.

Consideremos ahora que 3|21, nétese que 32212, es decir, 9/441 en efecto, 441 = 9 - 49. De
igual forma 33|213 ya que 213 = 9261 = 33 - 343. Se infiere entonces que si m|n entonces
mk]nk para todo k € N. A continuacién se demuestra esta propiedad para k = 2.

2‘ 2

Ejemplo 4.16. Si m|n entonces m=|n-.

Demostracion [Método Directo, Afirmacion-razon|
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1. m|n ... Hipotesis

2. Existe k € Z tal que n = mk ... Definicién de divisibilidad en 1

3. n? = (mk)? ... Elevando al cuadrado en 2

4. n? = m?k? ... Propiedades de potenciacién en 3
5.n2=m?zconz€Z ... Clausurativa en 4

6. m?|n? ... Definicion de divisibilidad en 5

~

Una consecuencia de la relacion de divisibilidad es la congruencia, donde m = n mod r
sii #|m — n. Por ejemplos, 4 = 16 mod 2 ya que 2|(4 — 16), mientras que 16 = —8 mod 2
puesto que 2|16 — (—8); notese ademés que la expresion 4 = —8 mod 2 también es cierta,
de alli que la congruencia médulo r cumpla la propiedad transitiva asi como la divisibilidad.

Ejemplo 4.17. Transitividad de la congruencia Sim = n modr yn = z modr
entonces m = z mod 7.

Demostracion [Método Directo, Prosa|

Por hipétesis m = n mod r y n = z mod r, con base en la definiciéon de congruencia en
términos de la divisibilidad se tiene que r/m — n y r|n — z, ya que r divide a cualquier
combinacion lineal (ver ejemplo 4.14) en especial a la suma, asi

r|(m—n)+ (n—z)

De donde se obtiene que r|m — z y por tanto m = z mod r que era el proposito de la
prueba. 0

Veamos otra propiedad, 16 = —7 mod 3 si se elevan al cuadrado tanto 16 como —7, se
conserva la congruencia médulo 3, en efecto, 162 = 256 y (—7)2 = 49 de alli que 3|256 — 49,
3]207 debido a que 207 = 3-67, se escribe 162 = (—~7)2 mod 3. Los niimeros 16 y —7 tienen
otra particularidad respecto del 3 y es que ambos dejan el mismo residuo al dividir por 3,
en este caso el residuo es 1, asi dos ntimeros son congruentes si dejan el mismo residuo al
dividir por r. Ambas propiedades se demuestran a continuacion.

Ejemplo 4.18. Sim = n mod r entonces m?> = n? mod r.

Demostracion [Método Directo, Afirmacion-Razon]

1.m=n modr ... Hipotesis
2.rim—n ... Definicion de congruencia en 1

3. m—n=kr, conkée€Z ... Definicion de divisibilidad en 2
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4. m=n+kr ... Despejando m en 3

5. m? = (n+ kr)? ... Elevando al cuadrado en 4

6. m? = n? + 2nkr + k?r? ... Trinomio cuadrado perfecto en 5
7. m? —n? = 2nkr + k*r? ... Propiedades de enteros en 6

8. m? —n? = (2nk +k*r)r ... Distributiva en 7
9.m?2—n?=krconk €Z ... Clausurativa en 8

10. r|m? — n? ... Definicién de divisibilidad en 9
11. m?> =2 n? mod r ... Definicion de congruencia en 10

Ejemplo 4.19. Sim y n dejan el mismo residuo z al dividir por r entonces m = n mod r.

Demostracion [Método Directo, Prosa|

Como m y n dejan el mismo residuo z al dividir por r entonces existen enteros k y k; tales
que m = kr—+zyn = kijr+z, restando ambas igualdades se tiene m—n = (kr+z)—(kyr+z)
que por las propiedades en los enteros se sigue m —n = (k — k1)r, como k — k1 = k2 es un
entero entonces m —n = kar que por la definicion de divisibilidad r|m —n y asi se concluye
que m=n modr. O

4.2.5. Ejemplos de Complejos

Los numeros complejos cumplen una serie de propiedades que generalizan los ntmeros
reales, algunas de estas propiedades tienen una interpretacion geométrica por graficacion

en el plano de Argand. Para las demostraciones se recurre al hecho que i> = —1. Con-
sideremos el ntmero complejo z = 3 — 2¢, asociado a este nimero se encuentran: La
parte real Re(z) = 3, la parte imaginaria I'm(z) = —2, el conjugado z = 3 + 2i y el

modulo |z| = /3% + (—2)2 = V/13. Sumando, restando y multiplicando z y Z producen
z+4+7Z=6=2-3, es decir, es el doble de la parte real, z —Z = —4i = 2(—2)i, el doble de la
parte imaginaria y z-Z = (3 — 2i)(3 +2i) = 9 — 442> = 9+ 4 = 13 como |z| = /13 entonces
z - Z es el cuadrado del médulo. Se demuestran estas propiedades a continuacion.

Ejemplo 4.20. Sea z € C entonces z +zZ = 2Re(z).

Demostracion [Método Directo, Afirmacion-razon|

1.zeC ... Hipotesis
2.z=a+bicona,beR ... Definicion de niimero complejo en 1

3.Z2=a—0bi ... Definicion de conjugado en 2
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4. z+z = (a+bi) + (a — bi) ... Sumando las igualdades 2 y 3
5. 2+2zZ=2a ... Propiedades de reales en 4
6. 2+ 7z = 2Re(2) ... Definiciéon de la parte real de z en 5

Ejemplo 4.21. Sea z € C entonces z -z = |z|?.

Demostracion [Método Directo, Prosa]

Puesto que z € C entonces z se puede escribir de la forma z = a + bi con a y b ntmeros
reales, el conjugado z del complejo z es de la forma Z = a — bi es por ello que z - Z se puede
escribir como

2-Z = (a+bi)(a—bi) = a® — abi + abi — b*i*> = a® — b*>
Debido a que i2 = —1 resulta la igualdad z - Z = a® 4 b? (1). Para z = a + bi el modulo se

obtiene como |z| = Va2 + b2 de alli que |z|? = a® +b? que por transitividad con la igualdad
(1) se concluye que z - Z = |z|? para todo z € C. [

Consideremos los niimeros complejos z = 2 + 3i y z; = —3 + 24, al multiplicar los mismos
se tiene que z - z1 = —12 — 5¢ cuyo conjugado es z - z; = —12 + 5i. Los conjugados de z y
zisonz=2—-3iy 2z =—3—2i cuyo productoes z-z21 = =12t + bt yasi z- 21 = 2 - 21,

situacién analoga ocurre con la adicion, la resta y el cociente.

Ejemplo 4.22. Sean z y z1 complejos entonces Z - z1 = Z - 2.

Demostracion [Método Directo, Afirmacion-razon|

1.zeC ... Hipotesis

2.21€C ... Hipotesis

3.z=a+bicona,beR ... Definicion de niimero complejo en 1
4. z1 =c+di con c,d € R ... Definicion de niimero complejo en 2
5.z z1 = (ac — bd) + (ad + be)i ... Producto de complejos entre 3 y 4
6. 221 = (ac — bd) — (ad + bc)i ... Definicién de conjugado en 5
7.Z=a—b ... Definicion de conjugado en 3
8.Z1=c—di ... Definicién de conjugado en 4
9.7-%z1 = (ac — bd) + (—ad — be)i ... Producto de complejos entre 7 y 8
10. Z - z1 = (ac — bd) — (ad + be)i ... Ley de signos en 9

11. 2721 =%2-71 ... Transitividad entre 6 y 10
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Ejemplo 4.23. Si z y z1 son numeros complejos entonces z + z1 = Z + 7.

Demostracion [Método Directo, Afirmacion-razon|

1.zeC ... Hipotesis

2.21€C ... Hipotesis

3.z=a+bicona,beR ... Definicién de ntimero complejo en 1
4. z1 =c+di con c,d € R ... Definicion de niimero complejo en 2
5.z4z1=(a+c)+ (b+d)i ...Suma de complejos entre 3 y 4

6. z+z1=(a+c)— (b+d)i ... Definicién de conjugado en 5

7. Z=a—"b ... Definicion de conjugado en 3
8.Z1=c—di ... Definicién de conjugado en 4
9.z4+zZ1=(a+c)+ (=b—d)i ...Suma de complejos entre 7 y 8
10.z+z1=(a+c)— (b+d)i ... Ley de signos en 9

1. z24+21=Z+71 ... Transitividad entre 6 y 10

Sean z = —143iy 2, = 5+2i, los modulos de ambos complejos son |z| = V10 y |z1| = /29,
por lo que |z| - |z1| = v/290. La multiplicacion de z y 21 es z-2; = —11+13i cuyo modulo es
|z - z1] = V290, asi |z - 21| = |2] - |21], tal propiedad funciona también para el cociente pero
no para la resta y la suma, en esté tltimo caso se conoce como la desigualdad triangular.

Ejemplo 4.24. Sean z y z1 numeros complejos entonces |z - z1| = |z| - |z1].

Demostracion [Método Directo, Prosa]

Con base en el ejemplo 4.21 se tiene la expresion |z - 212 = (2 - 21)(z - 21) (1), ya que el
conjugado de un producto es el producto de los conjugados de acuerdo con el ejemplo 4.22
entonces en (1) se escribe |2-21|? = (2-21)(Z-21), haciendo uso de las propiedades asociativas
y conmutativas en los complejos resulta

eoaf =z (a7 A=z (Fn) A= (23 (a7

Por medio del ejemplo 4.21 se sigue que |z - 21]? = |2]?|z1|? = (|z| - |21])? (2), debido a que
el moédulo de un complejo es un nimero positivo entonces en el expresion (2) se saca raiz
cuadrada para tener |z - z1| = |z| - |z1] esto para todo complejo z y z1. O

Por la propiedad del binomio de Newton se sabe que la expresion (a+b)? se puede expandir
como a? + 2ab+ b?, es decir, cada sumando al cuadrado y el doble producto de los niimeros,
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los médulos de los complejos satisfacen una expresion analoga la diferencia es que es el doble
producto pero de la parte real entre un complejo z y el conjugado de z;. Esta propiedad se
demuestra a continuacién y sirve para demostrar la desigualdad triangular en complejos.

Ejemplo 4.25. Si z y 21 son nimeros complejos entonces

|z 4+ 2112 = |22 + 2Re(z - 1) + |21)?
Demostracion [Método Directo, Prosa|

Debido a que |z|? = 2Z (ejemplo 4.21) se sigue que |z + 21|> = (2 + 21) - (z + 21), puesto

que el conjugado de una suma es la suma de los conjugados (ejemplo 4.23) y haciendo uso
de la propiedad distributiva resulta

z+21P=(z4+2) G+7A)=2Z+z - TA+2s Z+uA

Por medio del ejemplo 4.21 escribimos

2+ 2=z +2- T +2 2+ ]al> (1)
Debido a que Z = z para todos los complejos entonces se obtienen las igualdades z - z1 =
Z-2z] =z -2 = 21 - Z al sustituir en la expresion (1) se tiene

etz =l +z-m+2 m+ |zl (2)

Con base en el ejemplo 4.20 se tiene que z - Z] + z - z1 = 2Re(z - Z1) que al sustituir en la
igualdad (2) se concluye que |z + z1|? = |z|*> + 2Re(z - 71) + |21)*. O

Ejemplo 4.26. Desigualdad Triangular Si z y z; son ndameros complejos entonces
12+ 21| < 2]+ |z1]-

Demostraciéon [Método Directo, Prosa|

Por la propiedad demostrada en el ejemplo anterior 4.25 se tiene que
|2+ 21|* = |2 + 2Re(z - 71) + |2 |* (%)

Por las propiedades de complejos se sigue que 2Re(z - z1) < 2|z - Z1| (ejercicio propuesto),
como el modulo de un producto es el producto de los modulos y |Z1| = |z1] entonces
2Re(z - z1) < 2|z| - |z1|, por tanto en la igualdad (x) se tiene

|2+ 21 [* < |2+ 202] - 21| + |

El lado derecho de la desigualdad anterior es un trinomio cuadrado perfecto, con el cual se
escribe |z + 21]? < (2| + |21])? que al sacar raiz cuadrada se tiene |z + 21| < |z| + |21| que
era el proposito de la prueba.
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4.3. Meétodo Contrajemplo

Este es un procedimiento para objetar una afirmacién o una proposicion P,, consiste en
hallar un caso en el cual no tenga cumplimiento tal proposicion, en el sistema formal de la
logica cuantificacional se expreso esta condicion como ~ (Vx)(P,), es decir, que no es cierto
para toda = (en un dominio de referencia) tal que P, se cumpla. Este método es conve-
niente para refutar enunciados generalizados universalmente, aunque también a través del
cuantificador existencial como en la situacion (3z)(x? + 1 = 0) con dominio de referencia
en los reales.

Ejemplo 4.27. Por ejemplo la proposicion “Todo miltiplo de 2 y de 3 es maltiplo de 127
no es cierta para ello considérese a 18 que es multiplo de 2 y 8 pero no de 12.

Ejemplo 4.28. La expresion (n+m)! = nl+m! para n y m naturales no siempre es cierta,
para ello sean n =2 ym =4, donde n +m = 6 por lo que (n +m)! = 720, mientras que
n! =2 ym! =24 de donde se sigue que (n+m)! = 720 # n!+m! = 36. Sin embargo existe
n ym tales que las proposicion es cierta, sin =m = 1 entonces (n+m) =!n! +ml!, por lo
que la proposicion (In,n)((n + m)! = n! +m!) es cierta.

Ejemplo 4.29. Si se tiene la igualdad x -y = x -z no siempre se presenta la igualdad y = z,
por ejemplo, siz=0,y=2 1y z=3 se tiene que x -y =0=x -2z sin embargo y # z.

Ejemplo 4.30. Siempre que tenemos una igualdad, digamos x = y, no hay dificultad en
elevar a ambos lados al cuadrado para tener la iqualdad x> = y?, esta condicion no siempre
se presenta cuando se trabaja con las desigualdades, es decir, si a < b no se sigue que
a? < b2, por ejemplo, se sabe que —8 < 2, pero 64 &£ 4.

4.4. Método de Casos

El método de casos consiste en enunciados de la forma P; V P, — @, es decir, donde en la
hipoétesis aparece una disjuncion, los cuales representan los casos a realizar: Py, P,. Por un
razonamiento basado en el sistema formal de la logica proposicional se deduce que P, — @
y Py — @, en efecto

1. PAAVE —Q ... Hipotesis

2.~ (PLVP)VQ ... Definicion de condicional en 1
3. (~PIN~P)VQ ... Ley de D‘morgan en 2

4. (~PIVQ)N(~PaVQ) ... Distributiva en 3

5.~ P VvVQ ... Simplificacion en 4
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6. P —Q ... Definicion de condicional en 5
7.~ P,VQ ... Simplificacion en 4

8. P, —Q ... Definicién de condicional en 7
9. (PL—= Q)N (P, — Q) ... Conjuncién entre 6 y 8

Es decir, al obtener P; — (@ del enunciado original esté implicando que con el caso 1: P se
deduce la tesis Q. De igual forma, para el caso 2: Py se debe obtener la misma conclusion Q).
Esto aplica cuando en la hipo6tesis hay més de un caso, como ejercicio se propone demostrar
que para [(P1V P2)V P3] — @ se deducen las tres implicaciones P, — Q, P, — Qy P3s — Q,
en esta situacion los casos estan dados por: Py, Py y Ps.

Entre los aspectos importantes para el método de casos esta el hecho que si se habla de
un namero real x entonces por la propiedad de tricotomia se presentan tres posibilidades
x>0,z =00z < 0. Para el contexto de los ntimeros enteros, digamos n, se pueden
analizar los casos en que n sea par y en que n sea impar. Los dos ejemplos que se presentan
a continuacién son la aplicacion del método de casos a la logica proposicional.

Ejemplo 4.31. (P VQ) — (~ P — Q)

Demostracion [Método de Casos, Afirmacion-razon]

1.PVvQ ... Hipotesis

2. P ...Casoien 1

3.~ (~P) ... Doble negacion en 2

4.~ (~P) VQ ... Axioma de adjunciéon en 3

5 ~P —(Q ... Definicién de condicional en 4
6. Q ...Caso it en 1

7.Q VP ... Axioma de adjuncién en 6

8. P V@ ... Conmutativa en 7

9.~ (~P) VQ ... Doble negacion en 8

10. ~P — Q@ ... Definicion de condicional en 9
11. (PVQ) — (~ P — Q) ... Método de casos entre 5 y 10

Ejemplo 4.32. [(P — R)A (P — Q) A (~ QV ~ R)] —~ P es una proposicion verdadera.

Demostracion [Método de Casos, Afirmacion-razon|
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L.(P=RANP—-Q N(~QV~R) ... Hipotesis

2.P— R ... Simplificacion en 1

3. P—-Q ... Simplificacion en 1

4. ~QV ~R ... Simplificacion en 1

5. ~Q ...Caso i en 4

6. ~ P ... Modus tolendo tolens entre 3 y 5
7.~R ...Caso ii en 4

8. ~P ... Modus tolendo tolens entre 2 y 7
9. [(P—=R)AN(P—Q)N(~QV ~R)] =~ P ...Método de casos entre 6 y 8

Consideremos un niimero entero; como no hay condicién, n puede ser par, si n = 4 entonces
n?+n = 20, si n es impar, por ejemplo n = 11 entonces n? +n = 132; notese que en ambos
casos el niimero n? +n siempre es par. La expresion n? +n se escribe también como n(n+1)
esto por la propiedad distributiva, donde n + 1 es el entero que sigue a n, es por esto que
“La multiplicacion de dos enteros consecutivos es un nimero par’.

Ejemplo 4.33. Sin es un nimero entero entonces n® +n es par.

Demostracion [Método de Casos, Prosal
En este contexto los dos casos son que n sea par y que n sea impar debido a que n es entero.

Caso i: Como n es par entonces existe un k € Z tal que n = 2k que al elevar al cuadrado
se tiene n? = (2k)? = 4k?, sumando n con n? y haciendo uso de la propiedad distributiva
escribimos n? +n = 4k% 4 2k = 2[2k% 4 k], que por la propiedad clausurativa se escribe
n? +n=2r conr €Zy asi n? +n es par siempre que n es par.

Caso ii: Supongamos ahora que n es impar por lo que n = 2k;+1, donde k1 es un entero. Si
se eleva al cuadrado y se hace uso del trinomio cuadrado perfecto resulta n? = (2k; +1)2 =
4k? + 4k + 1, al sumar n y n? se logra

n? +n = (4k® +4k; +1) + (2ky + 1) = 4k% + 6k + 2 = 2[2k} + 3k1 + 1]

Es por ello que n? +n = 2t con t € Z y por tanto n? + n es par siempre que n es impar.
En ambos casos se concluye que n? +n es par para cualquier entero n.

Cualquier niimero real que se eleva al cuadrado siempre dara positivo o tal vez cero si a = 0,
es decir, a® > 0 para todo a € R. Esto ocurre con cualquier potencia que sea par. No ocurre
igual con las potencias impares, por que a® > 0 0 a® < 0 dependiendo si la base es positiva



112 Métodos de Demostracion

o negativa. El hecho que a? > 0 para cualquier real se puede utilizar en otras expresiones
como (a—b)2 >0, (a—i—b)2 >0o0 (a—i—b—|—0)2 > 0.

Ejemplo 4.34. Si a es un nmimero real entonces a® > 0.

Demostracion [Método de Casos, Afirmacion-razon]

l.aeR ... Hipotesis

22.4a=0Va>0Va<0 ... Tricotomia en 1

3.a=0 ...Casoien 2

4.a>=0 ... Elevando al cuadrado en 3

5.a2=0Va%®>0 ... Axioma de adjuncion en 4

6.a2>0 ... Definiciéon de > en 5

7.a>0 ...Caso ii en 2

8.a-a>a-0 ... Multiplicando por a en 7

9.a2>0 ... Definicion de potenciacion y propiedad en R en 8
10. a> >0V a®> =0 ... Axioma de adjuncién en 9

11. a2 >0 ... Definicién de > en 10

12. a <0 ...Caso iii en 2

13.a-a>a-0 ... Multiplicando por a en 12

14.a*> >0 ... Definicién de potenciacion y propiedad en R en 13
15.a2>0Va®=0 ... Axioma de adjuncién en 14

16. a*> > 0 ... Definicion de > en 15

17. Si @ € R entonces a® > 0 ... Método de casos entre 6, 11 y 16

Si tenemos ahora dos ntimeros reales, x e y, por la propiedad de tricotomia se presentan
tres posibilidades para cada uno: x >0, x =00 2 < 0; y > 0, y =0 o y < 0. Combinando
las posibilidades de cada niimero resultan los siguientes nueve casos

x>0 AN y>0 x>0 ANy=0 x>0 AN y<0
xr=0ANy>0 r=0ANy=0 x=0ANy<0
r<0ANy>0 <0 A y=0 r<0 AN y<O0

Estas nueve propiedades se presentan cuando se esta trabajando, por ejemplo, con el valor

z

absoluto |zy|. En expresiones como it de los nueve casos, solo se contemplan seis, debido

a que y # 0 y asi se descartan los tres casos de la columna de la mitad.
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Ejemplo 4.35. Si z,y son nimeros reales entonces |xy| = |x||y|.

Demostracion [Método de Casos, Prosal

Por la caracterizaciéon anterior, son nueve casos en total, de los cuales se analizaran solo
dos: Iguales signos (ambos negativos) y signos contrarios.

Caso i: En el caso en que z < 0 Ay < 0 se obtiene por la definicion de valor absoluto
que [z = —a y |yl = —y, para lo que [z - [y| = (—2)(~y) = @y (1). Ya que tanto = como
y son reales negativos entonces xy > 0, cuyo valor absoluto esta dado por |xy| = zy, por
transitividad por (1) se concluye en este caso que |zy| = |z| - |y|.

Caso ii: Si z > 0 Ay < 0, con base en el ejemplo 4.10 se sigue que zy < 0 y asi su valor

absoluto es |ry| = —xy (2). Por la eleccion de este caso se tiene que |z| = z y |y| = —y
de donde |z| - |y| = = - (—y) y asi por la ley de signos dicha igualdad se escribe como
|z| - |y| = —axy, por transitividad con la igualdad (2) se tiene |zy| = |z| - |y|. O

4.5. Meétodo del Contrarreciproco

El método del contrarreciproco es una variante del método directo. Es empleado, por lo
general, para probar condicionales en los que al hacer la demostraciéon directa no se logra
llegar a la conclusion deseada. En este caso, razonamos por el método directo para probar
el contrarreciproco del condicional que se quiere demostrar; asi: Se supone que la negacion
del consecuente es verdadera para deducir la veracidad de la negacién del antecedente, por
medio de una sucesiéon de argumentos validos; luego de esto, se concluye que el condicional
inicial es verdadero. La validez de este método se puede apoyar en el teorema del contra-
rreciproco que afirma que todo condicional es equivalente a su contrarreciproco.

Es decir, al considerar el enunciado P — @, con P la hipotesis y @) la tesis; el contrar-
reciproco de dicho condicional es de la forma ~ @Q —~ P, donde la hipotesis para esta
situaciéon es ~ @) y la tesis ~ P, cuya veracidad se demuestra a través del método directo.

Ejemplo 4.36. Sim - n es impar entonces m y n son impares.

Este enunciado se puede escribir en lenguaje proposicional como P — (Q A R) donde
P :m-nesimpar, @ : mes impar y R : n es impar. Haciendo uso del contrarreciproco se
tiene ~ (Q A R) —~ P, que por la propiedad de D‘Morgan equivale a (~ Q V ~ R) —~ P,
yva que la negaciéon de ser un nimero impar es ser un nimero par, resulta el enunciado
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Contrarreciproco: Si m es par o n es par entonces m -n es par

En esta nueva proposicién a demostrar, se debe hacer uso del método de casos, ya que en
la hipotesis aparece la disjunciéon: m es par o n es par.

Demostracion [Método del Contrarreciproco, Método de Casos Prosa]

Caso i: Si m es par entonces existe k entero tal que m = 2k si se multiplica a ambos lados
por n resulta m-n = (2- k) -n que por la propiedad asociativa de la multiplicacion se tiene
m-n = 2-(k-n) ya que k-n es entero entonces se escribe m-n = 2-t parat € Zy asi m-n es par.

Caso ii: Para n par, se escribe n = 2 - p con p € Z, si se multiplica por m tenemos
m-n =m-(2-p) por las propiedades en el sistema de los enteros resulta m-n = (m-2)-p =
(2-m)-p=2-(m-p)dedonde m-n=2-qpara q€ Zy asi m-n es par.

Como se concluye que la proposicion: “Si m es par o n son par entonces m -n es par” es
verdadera entonces su contrarreciproco: “Si m - n es impar entonces m y n son impares.”
también es una proposicion verdadera.

Ejemplo 4.37. ~ P — [~ (P V Q) V Q] es una proposicion verdadera.

Demostracion [Método del contrarreciproco, Afirmacion-razon|

El contrarreciproco de la proposicion dada equivale a ~ [~ (PV Q) V Q] — P, para la cual
se demostrara su validez por medio del método directo.

l.~[~(PVQ)VAQ] ... Hipotesis

2. (PVQ)A~Q] ...Ley D‘'Morgan y doble negacion en 1
3. PVQ ... Simplificacion en 2

4. ~ @ ... Simplificacion en 3

5. P ... Modus Tolendo Ponens entre 3 y 4

Como se concluyd por el método directo que ~ [~ (P V Q) V Q] — P es cierto, entonces su
contrarreciproco: ~ P — [~ (P V Q) V @] también es cierto. g

Ejemplo 4.38. Sin? es par entonces n es par.

Demostracion [Método del Contrarreciproco, Afirmacion-razon|
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Haciendo uso del contrarreciproco el enunciado se escribe como: Sin es impar entonces n’

es impar, donde la hipétesis en dicho caso es que n es impar.

1. n es impar ... Hipotesis

2. Existe k € Z tal que n =2k + 1 ... Definicion de niimero impar en 1
3. n% = (2k +1)? ... Elevando al cuadrado en 2

4. n? =4k> + 4k + 1 ... Trinomio cuadrado en 3

5.n% = 2(2k% + 2k) + 1 ... Distributiva en 4
6.n?=2r+1conreZ ... Clausurativa en 5

7. n? es impar ... Definicién de nimero impar en 6

Luego el contrarreciproco: “Si n? es par entonces n es par” también es cierto.

En el caso de la divisibilidad se tiene que si n es divisible por 3 entonces se escribe 3|n,
para lo que existe un k entero tal que n = 3k, es decir, el residuo que resulta al dividir
n entre 3 es cero. En el caso en que 3 no divida a n se escribe 3 f n y asi la divisiéon no
exacta, por lo que existen k y r enteros tales que n = 3k +r donde r = 1 o r = 2, por
ejemplo para 19 éste no es divisible por 3 y se escribe 19 = 3 - 6 + 1, mientras que para 68
resulta 68 = 3-2+2. Esta situacion se tendra en cuenta en la soluciéon del siguiente ejemplo.

Ejemplo 4.39. Sim no divide a un mailtiplo de n entonces m no divide a n. Se escribe Si
m{c-n entonces mtn.

Demostracion [Método del contrarreciproco, Prosal

El contrarreciproco del enunciado dado se escribe como: “Si m|n entonces m|c-n”, para lo
que la hipotesis es m|n que por la definicion de divisibilidad, existe k € Z tal que n = m -k,
al multiplicar por ¢ a ambos lados se escribe n - ¢ = (m - k) - ¢ asociando respecto de la
multiplicacion n - ¢ = m - (k - ¢) por las propiedad clausurativa se sigue que n-¢c=m - r
para r € Z, y asi por la propiedad conmutativa resulta ¢-n = m - r con lo que m|c - n, es
por ello que el contrarreciproco es cierto, es decir, “Si m{ ¢-n entonces mtn” g

Ejemplo 4.40. Si 3 {n entonces 31 n?.

Demostracion [Método Directo, Método de Casos, Prosal

Razonando de forma directa se tiene por hipotesis que 3 1 n por lo que existen enteros k y
r tales que n = 3k +r (1) donde 7 es el residuo que en este caso puede ser r =1 07 =2 (si
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r = 0 entonces n = 3k y asi 3|n situacion analoga con r = 3). Existen entonces dos casos
para analizar:

Caso i: Si r = 1 entonces al sustituir en la igualdad (1) se tiene n = 3k + 1 que al elevar
al cuadrado y desarrollar el binomio se escribe n? = 9k + 6k + 1 que por la propiedad
distributiva y clausurativa resulta n? = 3(3k* +2k) +1 = 32+ 1 con z € Z por lo que se
concluye que 3 { n? puesto que deja residuo 1.

Caso ii: Si 7 = 2 al proceder al igual que en el caso anterior resulta n? = (3k + 2)? =
9k% + 12k + 4 el 4 se puede descomponer como 3 + 1 para distribuir y tener

n?=9k> 4+ 12k +3+1=30Bk2+4k+1)+1=3p+1

Siendo p un entero, luego 3t n? por dejar residuo 1 y con ambos casos concluimos que “Si

31n entonces 3fn*". o

4.6. Meétodo Indirecto

El método indirecto o también conocido como reduccion al absurdo, se basa, al igual que el
método del contrarreciproco en proposiciones de la forma P — (), donde () no se deduce de
P de forma directa, siendo P la hipotesis. A diferencia del método del contrarreciproco se
considera que el condicional P — @ no es cierto y se busca una contradiccién con el &nimo
de asegurar que P — @ si es verdadera. Por logica proposicional ~ (P — @) es equivalente
a PN ~ @, asi que se puede hacer uso de ~ ) como una hipoétesis auxiliar la cual se
llamara negaciéon de la tesis, al momento de encontrar la contradicciéon necesaria se hace
uso del simbolo =<« para indicar tal situacion; la contradicciéon puede ser con la hipotesis
o con un resultado matematico que sea valido.

Ejemplo 4.41. Sia > 0 entonces = > 0

a
Demostracion [Método Indirecto, Prosa|

La hipotesis en este caso es que a > 0, la negacion de la tesis implica que % < 0, multipli-
cando esta desigualdad por a que es positivo, dicha desigualdad se conserva (ver ejemplo
4.9), por lo que a - % < a-0 (1), por la propiedad del inverso aditivo a - % = 1 y ademas
a-0 =0, entonces la expresion (1) equivale a 1 < 0 (=<«), lo cual es una contradiccion y

por lo tanto se sigue que % > (0 es verdadera.

El siguiente ejemplo se demostrd en el ejemplo 4.38 por medio del método del contra-
rreciproco, a continuacién se hara uso del método indirecto para demostrar dicha propiedad.
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Ejemplo 4.42. Sin? es par entonces n es par.

Demostracion [Método Indirecto, Afirmacion-razon|

1. n? es par ... Hipotesis
2. n es impar ... Negacion de la tesis
3. Existe k € Z tal que n =2k + 1 ... Definicion de niimero impar en 2
4. n? = (2k + 1)? ... Elevando al cuadrado en 3
5.n% =4k> + 4k + 1 ... Trinomio cuadrado en 4
6. n? = 2(2k% + 2k) + 1 ... Distributiva en 5
7.n?=2r+1lconreZ ... Clausurativa en 6
8. n? es impar ... Definicién de niimero impar en 7
9. (n? es par) A (n? es impar) ... Conjuncién entre 1 y 8

=< ... Un ntmero entero no es a la vez par e impar
10. n es par ... Método indirecto en 2

Ejemplo 4.43. Sin? es divisible por 3 entonces n es divisible por 3.

Demostracion [Método Indirecto, Método de Casos, Prosal

Por hipotesis se tiene que n? es divisible por 3, que en términos de divisibilidad se escribe
como 3|n?. La negacion de la tesis consiste en que n no es divisible por 3 (3 { n), con base
en la definicion de no-divisibilidad, existen enteros k y r para los que n = 3k + r donde
r tiene solo dos posibilidades r = 1 o r = 2; por medio del trinomio cuadrado perfecto se
tiene que n? = (3k +r)? = 9k? + 6kr + 12 (1).

Caso i: Consideremos el caso en que 7 = 1 de donde la expresion (1) se escribe como
n? = 9k + 6k + 1 que por la propiedad distributiva n? = 3(3k% +2k) + 1, y asi n? = 32 +1,
donde se sigue que 3 1 n? (=<=) lo cual contradice la hipétesis 3|n?.

Caso ii: Sir = 2 entonces la igualdad (1) se escribe como n? = 9k>+12k-+4 = 9k +12k+3+
1 con base en la propiedad distributiva y clausurativa resulta n? = 3(k%2+4k+1)+1 = 32z;+1
por lo que 31 n? y asf se genera la contradiccion.

Ejemplo 4.44. [~ (AAB)A(~C — A)N(~ B — C)] — C es una proposicion verdadera.
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Demostracion [Método Indirecto, Afirmacion-razon|

I.~(AANB)AN(~C — A)AN(~B—C) ... Hipotesis
2. ~C ... Negacion de la tesis
3.~ (AANB) ... Simplificacion en 1
4. ~C — A ... Simplificacion en 1
5. ~B —(C ... Simplificacion en 1
6.~AV~B ... Ley de D‘Morgan en 3
7. A ... Modus ponendo ponens entre 2 y 4
8. ~B ... Modus tolendo ponens entre 6 y 7
9.C ... Modus ponendo ponens entre 8 y 5
10. ~CNC ... Conjuncién entre 2 y 9

=& ... Por tabla de verdad de la conjuncién
11. C ... Método indirecto en 2

El método de reduccién al absurdo se utiliza cuando en el enunciado del teorema aparezcan
expresiones sobre irracionalidad o el conjunto vacio, asi como en situaciones donde no exista
la definicion de los objetos a trabajar. En el siguiente ejemplo se demostrara que v/2 no es
un ntimero racional, es decir, v/2 es un ntimero irracional. En el caso en que se tengan dos
nameros pares puede ocurrir el caso en que m.c.d.(p,q) = 2 por ejemplo sip =2y q = 24,
sin embargo puede suceder que m.c.d.(p,q) > 2 haciendo p =4 y ¢ = 36. Tenga en cuenta
que en el siguiente enunciado no hay hipétesis.

Ejemplo 4.45. /2 no es un nimero racional.

Demostracion [Método Indirecto, Prosal

Supongamos por el contrario que v/2 es racional, por lo que existen enteros p y q con g # 0
y m.c.d.(p,q) = 1 tales que v2 = %, al elevar al cuadrado y utilizar propiedades de poten-

ciacion resulta 2 = Z—z, multiplicando por ¢2 a ambos lados escribimos 2¢? = p? (1) en cuyo
caso se sigue que p? es par, de donde p es par (ver ejemplo 4.38) asi p se puede escribir de la
forma p = 2k (2) donde k es un ntimero entero, sustituyendo (2) en (1) se obtiene 2¢* = 4p?
que por la propiedad cancelativa ¢ = 2p? y asf ¢° es par que por un razonamiento analogo
q es par. Ya que tanto p como ¢ son pares entonces m.c.d.(p,q) > 2 (=<) lo cual esta en
contradiccion con el hecho que m.c.d.(p, q) = 1. Asi /2 es irracional. [

Ejemplo 4.46. Sim yn son enteros tales que n 4+ n?> +n3 = m + m? entonces n es par.
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Demostracion [Método Indirecto, Afirmacion-razon|

1. n+n?+n®=m+m? ... Hipotesis
2. n es impar ... Negacion de la tesis
3. Existe k € Z tal que n =2k + 1 ... Definicién de niimero impar en 2
4. 2k+ 1)+ (2k+1)2+ 2k +1)3 =m+m? ... Sustituciéon de 3 en 2
5. (2k41) + (4k% +4k +1) + (8k> + 12k> +-6k +1) = m+m? ...Propiedades de potenciaciéon en 4
6. 8k + 16k> + 12k +2+ 1 =m +m? ...Suma de términos semejantes en 5
7. 2(4k3 + 8k2 + 6k + 1) + 1 = m + m? ... Distributiva en 6
8.2r+1=m+m?conrecZ ... Clausurativa en 7
9. m +m? es impar ... Definicién de niimero impar en 8
10. m + m? es par ... Ejemplo 4.33
11. (m + m? es par) A (m + m? es impar) ... Conjuncién entre 9 y 10

=< ... Un entero es par o impar
12. n es par ... Método indirecto en 2

Ejemplo 4.47. La multiplicacion de un nimero racional diferente de cero por un nimero
irracional es otro nimero irracional.

Demostracion [Método Indirecto, Prosal

De acuerdo con el enunciado del teorema se requiere un nimero racional diferente de cero,
llamese p (con p # 0) y un ntumero irracional llamese 1, puesto que debe demostrarse que
p-1 es irracional entonces se supondré que es racional, por lo que existen enteros m y n # 0
para los que p -1 = "% (1). Ahora bien, ya que p € Q entonces existen enteros my y n1 # 0
tales que p = m1 donde ademés my # 0 ya que p # 0; sustituyendo en la igualdad (1) se

escribe :Z—ll - = ™ que al multiplicar a ambos lados por ;'L resulta 1) = :fll = :;11727 por
la propiedad clausuratlva se tiene que ¢ = m2 donde no 7é 0 (por ser mq # 0y n # 0) asi
1 es un nimero racional (=<), lo cual contradlce el hecho que 7 es irracional, con esto se

concluye que p - 9 es irracional.

4.7. Inducciéon Mateméatica

EL principio de induccién matemética es un método que se aplica siempre que se esté traba-
jando sobre la base del conjunto de los niimeros naturales, principio que sirve para demostrar
las generalizaciones de las propiedades que cumplen algunos de los objetos matematicos.
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En este método se verifica en primera instancia que la proposicion sea cierta para un primer
elemento, luego se supone cierta para un elemento k y se demuestra la veracidad para el
siguiente ntumero k + 1 a partir del elemento k. El principio se asemeja al efecto domind
donde los dominos se ubican verticalmente y se disponen siguiendo una secuencia, de tal
manera que al dejar caer el primer dominé esté afecta los demas.

Ejemplo 4.48. ;A cudnto equivale la suma de los cien primeros naturales?

Para dar respuesta a esta pregunta se suman el primer y tltimo término, segundo y pentilti-
mo y asi sucesivamente, es por ello que 14243+ . .498+99+100 resulta 1014+1014. . .+101,
donde el niimero 101 se repite 50 veces debido a que son 100 niimeros, es por ello que
14243+...4984+99+ 100 = 50- 101, donde 101 es la suma de 100 y 1 y 50 es la mitad
de los numeros, se escribe 1 +2434...4+98+99 + 100 = % - (100 + 1) Parece entonces
que al tratar de sumar los nimeros naturales comenzando en 1 hasta un n fijo se presenta

la igualdad
14243+...4(n—-2)+(n—1)+n=

|3

“(n+1)

Donde n es un natural cualquiera y la igualdad anterior depende solo de dicho niimero.
El proceso anterior consistié en obtener una proposiciéon general a partir de proposiciones
particulares; a este proceso se le llama induccién. Pero se debe tener especial cuidado con
el razonamiento inductivo, puesto que puede conducir tanto a conclusiones falsas asi como
verdaderas.

Ejemplo 4.49. Sea S, = 1—12 + % + ﬁ + ...+ m donde n es un niumero natural;
determinar una regla general para Sy,.

En el caso en que n = 1 resulta S; = % = %, paran = 2 se tiene So = %‘F% = %+% = %,
para 3 y 4 se encuentra S3 = 712—1—%—1—3%4 = % y S4 = 712—1—2%3—1—3%4—&—4%5 = %. Analizando

estos cuatro casos se encuentra una regla general para la suma S,, donde

R S S 1 on
"1-2 237 n-(n+1) n+l

Esto para todo n € N.

Ejemplo 4.50. Sea f(x) = 2% + 2 + 41 con x € N ;Es f(x) primo para todo x?

Si se reemplaza la = por el nimero uno, se obtiene el nimero primo f(1) = 43. Si se con-
tinda reemplazando la x por 2, 3, 4, 5, 6, 7, 8, 9, 10, sucesivamente, se obtiene en cada uno
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de los casos, un namero primo: f(2) = 47, f(3) = 53, f(4) = 61, f(5) = 71, f(6) = 83,
f(7) =97, f(8) =113, f(9) = 131, f(10) = 151. Para dar respuesta a la pregunta original
se hace © = 40 para que resulte la expresion f(40) = 40% + 40 + 41 =40 (40 + 1) + 41 =
40 -41 + 41 = 41 - (40 + 1) = 412, el cual es un niimero compuesto ya que se puede dividir
por 1, 41 y 412, y asf la funcién f(x) = x? + o + 41 no genera ntimeros primos para to-
do z € N. Recuerde que no existe una forma recursiva que genere todos los ntimeros primos.

En los ejemplos, el razonamiento empleado condujo a establecer una proposicién general
para n o para x, a partir de unas proposiciones verdaderas para ciertos valores particulares
de n o x. Asi las proposiciones obtenidas en los ejemplos 4.48 y 4.49 son verdadera, como
se demostrara posteriormente; no obstante, la proposiciéon general del ejemplo 4.50 es falsa,
puesto que s6lo se obtienen ntimeros primos para 1, 2,3, ...,38,39, y cuando z = 40 el valor
de la funcion f(z) = 22 +x +41 es f(40) = 412 que es un niimero compuesto. Este ejemplo
ilustra un hecho sencillo pero importante: “ Una proposicion puede ser verdadera en muchos
casos especiales, sin embargo, no cumplirse en general.”

El principio de inducciéon matemética se aplica cuando se esta trabajando sobre el conjunto
de los nameros naturales, es decir, cuando aparezcan expresiones como para todo n € N (o
para todo n > k donde k es un natural fijo mayor que la unidad) se verifica cierta propiedad.
Para ello es necesario tener presente los tres pasos siguientes en dicho orden, donde P(n)
es la proposicion a demostrar

1. Verificar para el primer elemento: Es decir, mostrar que la propiedad se cumple
para el primer elemento que no necesariamente tiene que ser el 1, P(1) o P(r) siendo
r el primer término que debe cumplir.

2. Hipotesis inductiva: Suponer que la propiedad es cierta para un cierto k£ € N fijo y
mayor que el primer elemento, P(k) es verdadera.

3. Tesis Inductiva: Demostrar que la propiedad se cumple para el elemento k& + 1, es
decir, para el siguiente de k, P(k + 1) es verdadera.

La hipotesis inductiva se puede variar donde la propiedad sea cierta para un k—1, se escribe
P(k —1) es cierta; con esta hipotesis la tesis inductiva debe cumplirse en términos de k (el
siguiente de k — 1), esto es, P(k) es verdadera. A continuacion se demuestra la veracidad
de dicho principio.

Teorema 4.1. Para cadan € N sea P(n) una proposicion sobre n. Supdngase que

1. P(1) es verdadera

2. Si P(k) es verdadera entonces P(k + 1) también es cierta
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Entonces P(n) es verdadera para todo n € N.

Demostracion [Método Indirecto, Prosal

Se quiere demostrar que si se cumplen las condiciones 1 y 2, entonces P(n) es verdadera
para todo nimero natural n. Utilizando una demostracion indirecta, se tiene que si P(n)
no fuera verdadera para todo ntimero natural, habria un ntimero natural, llamese m, el
menor de todos para los cuales la proposicion es falsa. Por la condicion 1, m # 1 (por que
1 cumple la proposicion P y m no la cumple) de manera que m > 1, por lo que m — 1 es un
nimero natural. Debido a que m es el menor natural para el cual la proposicion es falsa,
entonces la proposicion es verdadera para m — 1 , pero falsa para (m—1)+1 = m; esto con-
tradice la condicion 2. Por lo tanto, la proposicién debe ser verdadera para todo natural.

1 _.n
g D)~ ntT €8 verdadera para todo

Ejemplo 4.51. Demostrar que Sy, : % + 2—13 +...+
n € N. Este resultado se obtuvo en el ejemplo 4.49.

Demostracion |Principio de induccién, Prosa]

En el caso en que n = 1 se tiene S : % = % lo cual hace que la proposicién sea verdadera
para el primer elemento. Supongamos ahora que es verdadera para k € N, para lo que

1 ok
k-(k+1) k+1

‘ -

S, : + +..+

1
— Hipotesis inductiva
1- 2-3

\)

Y demostremos que Sk : 1—12 + % + ...+ k-(/~:1+1) + (k+1)}(k+2) = i—ié la cual representa

la tesis inductiva. Sumando a ambos lados de la hipotesis inductiva el término m

resulta

1 N - 1 N 1 kK N 1
(k+1)(k+2) k+1 (k+1)(k+2)

1
1.2 2-3 k-(k+1)
Por suma de fracciones y propiedad distributiva, la igualdad anterior se escribe como

1 1 k(k+2)+1 k% +2k+1

PG TGk Y G+DGkT2)  GrDeey Y

Loy
1-2 2.3 77
Como el término k% + 2k + 1 se puede escribir como (k + 1)2 por ser un trinomio cuadrado
perfecto entonces en la igualdad (1)

1 1 (k+1)2 k+1

k-(k+1)+(k:+1)(k+2) (k+1)-(k+2) k+2

+...+

1 n 1
1-2 2.3
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En este caso se simplificaron los términos semejantes. La anterior igualdad representa la
tesis inductiva, asi la proposicion Syt es cierta siempre que Sy sea cierta, por el principio
de inducciéon matematica, teorema 4.1, se concluye que

1 1 1 n

Spit—+-—+... =
gt +n-(n+1) n+1

es una proposicion verdadera para todon € N.

Ejemplo 4.52. Demostrar que 1 +2+3 4 ...+ n = % para todo n € N, enunciado

que se obtuvo en el ejemplo 4.48

Demostracion |Principio de induccion, Afirmacion-razon|

Considérese la proposicion

1
P(n):l+2+3+...+n:%

En el caso en que n = 1 se tiene que 1(1;1) =1 por lo P(1) es cierta. Si P(k) es verdadera
para k € N entonces

E(k+1
Pk):1+243+...+k= % Hipotesis inductiva
Veamos que P(k+1):1+24+3+...+k+(k+1)= %M es verdadera.
1.1+243+...+k= k(k;l) ... Hipétesis Inductiva

2.1424+3+...+k+(k+1
3142434 +k+(k+1
4142434 +k+(k+1

):k(k_;1)+(k+1) ...Sumando k+ 1 en 1
) = RED+2AR+D)

3 .. Suma de fracciones en 2
) — (k+1)(k+2)
= 2

.. Distributiva en 3

Por la expresion obtenida en el paso 4 se sigue que P(k+ 1) es verdadera siempre que P(k)

loseayasiP(n):1+2+3+...+nzw es verdadera para todon € N.

Ejemplo 4.53. Para todo n € N se cumple que (n+ 1)! = (n + 1)n!

Demostracion [Principio de Inducciéon, Afirmacion-razon|

Si hacemos que n = 1 resulta la igualdad 2! =2 = 2 - 1! = 2, por lo que la proposicion es
verdadera para el primer elemento. Supongamos ahora que la propiedad es vélida para k
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por lo que (k + 1)! = (k + 1)k! (hipotesis inductiva) y demostremos que se satisface para
k+1, es decir, (k+2)! = (k+2)(k+ 1)!

L. (E+ D)= (kE+1)k! ... Hipotesis Inductiva

2. (k+2)!=((k+1)+ 1) ... Propiedad de reales

B (k+2)!=((k+1)+1)(k+1)! ... Utilizando 1 en 2

4. (k+2)!=(k+2)(k+ 1) ... Propiedad de reales en 3
5. (n+1)! = (n+ 1)n! para todo n € N ... Principio de induccién 4.1

Ejemplo 4.54. 1-1!+2-21+3-3!+ ...+ n-nl = (n+1)! -1 esto para todo n € N.

Demostracion [Principio de Induccién, Prosa]

En este caso se considera la proposicion
Pn):1-114+2-2143-3/+...+n-nl=(n+1)! -1
Paran = 1lresulta1-11 =1y (14+1)!—=1=2—-1=1 por lo que P(1) es verdadera.
Supongamos ahora que P(k) es verdadera para k € N, esto es
Pk):1-1'4+2-214+3-314+...+k-kl=(k+1)!—1 (Hipotesis inductiva)
Y se demuestra que P(k + 1) es cierta, lo cual es equivalente a
Plk+1):1-1'42-2143-3!+.. . k-kl +(E+1)- (k+1)! = (E+2)! =1 (Tesis Inductiva)

Puestoque 1-11+2-2!4+3-3!1+...+k-k! = (k+ 1)! — 1 es verdadero por ser la hipotesis
inductiva entonces al sumar a ambos lados el término (k + 1) - (k + 1)! resulta

1-0+2-204+3-3'+...+k-K+Ek+1)-(k+D)=[(k+1)! =1+ (k+1)- (k+1)!

Por las propiedades en los enteros como la asociativa, conmutativa y distributiva se tienen
las igualdades

- +2- 20+ + kK +k+1)-(k+ D) =(k+1)!+[-1+ (k 1) - (k+1)!]
= (k+ D)+ [(k + <+>'—11
= [(k+ 1)1+ (k + > (k+1)!] -
=k+DI(k+1+ )—1:(k:+2)(k:+1)!—1

En el ejemplo 4.53 se demostro que (n+1)! = (n+1)-n!, por lo que (k+2)! = (k+2)(k+1)!
y asi en la igualdad (1) se obtiene 1-114+2-2!+.. . +k-kl+ (k+1)- (k+1)! = (k+2)! -1,
es decir, la proposicion es cierta para k + 1 y se concluye entonces que

L4224+ ... +n-nl=(n+1) -1

(1)
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Es cierta para todo n € N (ver teorema 4.1).

Ejemplo 4.55. n < 2" para todo n € N.

Demostracion |Principio de Induccion, Afirmacion-razon|

En este caso el primer elemento es el 1 ya que la propiedad se cumple para todo n € N,
por lo que si sustituye n por 1 resulta 1 < 2 lo cual es cierta. Supongamos ahora que se
cumple para un k especifico asi k < 2 (hipotesis inductiva) y demostremos que se cumple
para k + 1 es decir, (k4 1) < 281,

1. k< 2k ... Hipotesis Inductiva

2.2k < 2.2k ... Multiplicando por 2 en 1

3. 2k < 2k+1 ... Propiedades de potenciaciéon en 2
4.1 <k ... Propiedad de los naturales

5. k+1<k+k ...Sumando k£ a ambos lados en 4

6. k+1<2k ... Suma de términos semejantes en 5
T.k+1 <2k ... Transitividad entre 3 y 6

8. n < 2" paratodon € N ... Principio de Induccién 4.1

Consideremos la diferencia 8" — 3™ donde n es un nimero natural, en el caso en que n = 1
la diferencia se escribe como 8 —3 = 5, para n = 2, 82 — 32 = 55, para n = 3, 8 — 33 = 485,
noétese que cada uno de los resultados obtenidos es un ntimero divisible por 5 ya que termi-
nan en 5, asi que es posible inferir que 8" — 3™ es divisible por 5 independiente del valor de
n € N, en el siguiente ejemplo se demuestra esta situaciéon. En general, si a y b son ntimeros
enteros, entonces a — b divide a a” — b" para cualquier n, no hay dificultad en que a y b
sean enteros, consideremos el caso de (—10)" — (—3)™ para los tres primeros términos se
obtiene —7, 91, —973, todos nimeros divisibles por —7 = —10 — (—3) y por ende también
divisibles por 7.

Ejemplo 4.56. 8" — 3" es diwvisible por 5 para todo n € N

Demostracion [Principio de induccién, Prosal

El enunciado se puede reescribir como 5|(8" — 3") para n = 1 se sigue que 5|5 lo cual es
cierto. Supongamos ahora que se cumple para k entonces 5|(8% — 3%) (hipétesis inductiva)
y veamos que 5|(8F+1 — 3k+1),



126 Métodos de Demostracion

Con base en la hipotesis inductiva se tiene que 5\(8”C - 3’“), que por la definicién de di-
visibilidad existe » € Z tal que 8¢ — 3¥ = 57, multiplicando a ambos lados por 8 y
haciendo uso de las propiedades de potenciaciéon resulta 8(8’“ — 3’“) = 40r equivalente a
gkl — 8. 3F = 40r, puesto que 8 = 5 + 3 entonces 8! — (5 4+ 3) - 3¥ = 40r, por la
propiedad distributiva 81 — 5. 3% — 3¥+1 = 40r, sumando 5 - 3* a ambos lados resulta
gkt _3k+1 — 40r+5-3" en el lado derecho se aplica la propiedad distributiva y clausurativa
para lograr 8"+ — 381 = 5[8; 4 3%] = 52 donde z € Z, asi 5/(8*+! — 3¥*1) y 1a tesis induc-
tiva se cumple. Con base en el teorema 4.1 se concluye que 5[(8" —3") paratodon € N.

Los ejemplos anteriores representan casos directos de la aplicaciéon del método de inducciéon
matematica. En casos més complicados, segiin sea la proposiciéon, hay que modificar el
enunciado de las dos condiciones.

1. En ocasiones, para probar que la proposicion es verdadera para n = k + 1, se requiere
saber que la proposicién es verdadera paran = ky n = k—1; es decir, los dos ntimeros
que preceden a k+ 1. En tales casos, de la condicion 2. del teorema 4.1 se necesitaria
probar la aseveraciéon para dos valores consecutivos de n.

2. A veces se desea probar una proposicién para todos los valores de n mayores que o
iguales a algin entero no negativo m. En estos casos se verifica, en la primera parte de
la demostraciéon, que la proposiciéon es verdadera para n = m, y, si es necesario, para
determinados valores de n. Por ejemplo, en algunos casos se encuentran proposiciones
que deben probarse para todos los valores no negativos n (n > 0). En dichos casos,
la primera parte de la demostracion se prueba para n = 0; en la segunda parte se
procede de manera usual.

Ejemplo 4.57. 2™ < n! para todo natural n > 4.

Demostracion [Principio de Induccién, Prosa]

En este caso el primer elemento es el 4 de acuerdo con el enunciado, sustituyendo n por
4 resulta 16 < 24 que es cierta. Supongamos ahora que se cumple para k esto es 28 < k!
(hipotesis inductiva) y demostremos que se cumple para k 4 1 es decir, 281 < (k4 1)!.

Por la hipétesis inductiva 2¢ < k! entonces al multiplicar a ambos lados por 2 resulta
2k < 2. k! (1). Como 1 < k para k € N, expresion que es equivalente a 2 < k + 1, al
multiplicar a ambos lados por k! (positivo) se tiene 2 - k! < (k + 1) - k!, con base en el
ejemplo 4.53 se sigue que 2 - k! < (k+ 1)! y asi por transitividad con la desigualdad (1) se
obtiene 2¥1 < (k + 1)!, por lo que se satisface la tesis inductiva. Con base en el principio
de induccion se concluye que 2" < n! para todo natural mayor o igual que 4.
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Ejemplo 4.58. Sizi =1, 29 =2 y xp190 = %(xn + Xpy1) entonces 1 < x, < 2 para todo
n € N.

Demostracion [Principio de Induccién, Afirmacion-razon|

En este caso la proposiciéon es cierta paran = 1y n = 2, yaque xr1 = 1y x9 = 2.
Supongamos que la propiedad se cumple para k — 1 y para k en los naturales, por lo que

1< 1<2 vy 1<z,<2 Hipotesis inductiva

Veamos que la condicion se cumple para k + 1, es decir, 1 < zx41 < 2 (tesis inductiva)

1.1 < a1 <2 ... Hipotesis Inductiva

2.1 <2, <2 ... Hipotesis Inductiva

3.2<xp_ 1 +ap <4 ...Sumando las desigualdades en 1y 2
4. % -2 < %[HTk—l + ) < % -4 ... Multiplicando por % en 3

5.1< %[xk_l +x5) <2 ... Propiedad de los reales en 4

6.1 <xp1 <2 ... Por ser x40 = %[mn + Xpy1] en b
7.1 <z, <2paratodon €N ... Principio de induccién

Ejemplo 4.59. Se cumple la identidad

; 2n+1
cos(a) cos(2a)) cos(4a) . .. cos(2"a) = ;:L(l—.(a))
sin(a

Para todo « en los reales tales que sin(a) # 0 y n > 0.

Demostracion |[Principio de Induccion, Prosa]

En la trigonometria circular se demuestra que sin(2a) = 2sin(a) cos(a) (1), de donde se
deduce que cos(a) = ;13512(3)), esto siempre que sin(a) # 0. es por ello que para n = 0 se
presenta la igualdad. Supongamos ahora que la propiedad es cierta para k en los naturales,

asi

sin(2F+1a)

= ————— 2  Hipodtesis inductiva
2k+1 sin(a) P

cos(a) cos(2a) cos(4a) . . . cos(2Fa)
Se prueba a continuacion que la propiedad es cierta para k + 1, es decir

: 2k+2
cos(a) cos(2a) cos(4a) . .. cos(2Fa) cos(2F 1 a) = sin @) Tesis inductiva

- 2k 2gin(a)
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Si se multiplica la hipotesis inductiva por el término cos(2¥+1a) se tiene

in(2k+1
cos(a) cos(2c) cos(4ay) . . . cos(28a) cos(2¥1a) = ;gjr(l—,(a)) cos(2¥1a)
sin(a
sin(2F1a) cos(2F 1)

2k+1gin (o)

Puesto que sin(3) cos(8) = 3 sin(23) de acuerdo con la igualdad presentada en (1), entonces
si se hace 8 = 28"1a se obtiene sin(28+!a) cos(2¥1a) = Lsin(2 - 28 1a) = Lsin(28+2q)
que al sustituir en la igualdad (2) se tiene

T 22k 1sin(a)  2F2sin(a)

1 si 2k+2 : 2k+2
cos(a) cos(2c) cos(4ay) . . . cos(28a) cos(2¥1a) = sin @) _ sin( @)

Debido a que la tesis inductiva se cumple, entonces por el principio de induccién se concluye
que

; 2n+1
cos(a) cos(2a) cos(4a) . .. cos(2"a) = %.(a))
in(a

es una proposicion cierta para todon € N.
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4.8. Ejercicios

Método Directo

Con base en la definicion de numeros pares e impares demostrar

1. La suma de un niimero par y un nimero
impar es un nimero impar.

3. El producto de un ntimero par y un niimero
impar es un nimero par.

5. Si n es impar entonces n* y n® son impares.

2. La suma de tres nimeros impares es impar.

4. El producto de cuatro ntimeros impares es
un nimero impar.

6. Si n es par entonces n? y n3 son pares.

Sean m, n, p y q enteros. Demuestre las siguientes propiedades de divisibilidad

7. Sim | n entonces m | n* con k natural.

9. Si m | n entonces m | (—n).
11. Sim | ny p| q entonces mp | ng.

13. Sim = m mod r.

15. Sim = n mod r entonces m* = n* mod r

8. Sea ¢ un entero tal que ¢ # 0. m | n sii mc
ne.

10. Si m | n y k € N entonces m* | n*.
12. Sim = n mod r entonces n = m mod r

14. Si m = n mod r entonces ecm = e¢n mod r
siendo ¢ € Z
16. Sim =Zn modr y p = ¢ mod r entonces
m+p=n+qg= modr

Sean a, b reales positivos y x, ¥, z, w reales cualesquiera, entonces

17. Si a < b entonces a? < b2

1 1
@b

2l.siz <yy 2z <wentonces x + z < y + w.

19. si a < b entonces

Sean x, y y z nimeros reales, demuestre que
23.Siz 4y =2+ 2z entonces y = z.
25.Si zy = zz y © # 0 entonces y = 2.

27. Si p,q € Q entonces pg es un nimero
racional.

atb < 2ab
18. 2 >zz+b

20. 22 + 2+ 22 > ay+ a2+ yz
22. Se define la media aritmética como “T"’b

v la media geométrica como v ab. Demuestre
que vab < GTH’.

24. Si p,q € Q entonces (p + ¢) es un namero
racional.

26. Si p,g € Qy g # 0 entonces g
numero racional.

€S un

28. Si p € Q entonces 2p y p? son racionales.
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Sean z y z; numeros complejos; demuestre las siguientes propiedades

29. z —Z = 2Im(z2) 30. [Z] = |7

3l.z==z 32.81 27! = ﬁ? con |z| # 0 entonces zz71 = 1
2 .

33. |2 > |Re(2)| 4. 2 =ty + il

35. (—1) -

Método de Casos

36. |2+ 212+ |2 — 21)? = 2(]2]? + |21 |?) identidad
del paralelogramo.

N

Si tanto n como m son niimeros enteros entonces demostrar las siguientes propiedades

1. Si n es entero entonces n3 + n? es par. 2. El producto de tres enteros consecutivos es
un nimero par.

3. Si n es entero entonces n® + 3n% 4+ 2n es 4.Sim | nyn | mentoncesm =nom = —n.

par.

5. El producto de dos enteros consecutivos es
un entero par.

Sean z, y numeros reales demuestre que

6. — |z |<z<| x| 7}}—%00113:750

8.Siz=00y=0 entonces zy =0 9.SeaaceR. |z|<asii —a<z<a

10. Si zy =0 entonces z =00y =0 11. Sea a € RT, si a <| x | entonces a < z o
z < —a

Método del Contraejemplo

Las siguientes propiedades estan dadas para todo x, y y z en los reales.

La?+y? = (z+y)? 2 |z +yl=lz]+]y]
3. Si z < y entonces cx < cy 4. |cx| = c|z|

5. Si xy = xz entonces y = z 6.§+%§2

722> 1 8. 22 + y? < 22y

9. Si z e y son reales negativos y £ > 1 entonces 10. ||z| — [y|| > [z — y|
y—ax >0

11. (n+m)!=n!4+m! donde n,m son naturales 12. La multiplicacion de dos irracionales es
otro irracional

13. Se Verlﬁca - + -+ = w3 -l- L1 ~ para todo 14. Sean a,b ¢, x,Yy,z con b, r,z No ceros.

x,1, z en los reales Si ¢ < £ < ¥ entonces § < bj:fcig <Y
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Reduccién al absurdo

1. Si n? es divisible por 5 entonces n es divisible 2.

por 5, conn € Z

3. Si n? es impar entonces n es impar.

Demuestre que /5 es irracional.

5. La suma de un irracional y un racional es un 6.

irracional.

7. Sin? es divisible por 2 entonces n es divisible 8.

por 2, conn € Z

Induccion Matematica

3 . .
Demuestre que /2 es irracional.

1+4+74+114...+(Bn—2)=1inBn-1)

1.

3.3">2n+1
5. 14 2n < 3"
7. a"
9.

— 0™ es divisible por a — b
2" < (n+1)!
11.n3 +1>n%4n,Vn>2
13. 3|(4™ — 1) para todon € N
15.1+3%+524+...(2n— 1)? = in(4n?® — 1)

n n
17. (%) :Z—ncony;«éo

Miscelaneos

2.Tn < 2™, ¥n > 6

4.3">n3 Vn >4

6. n3 + 2n es dividido por 3 para todo n € N
8.1+224+32+ ... +n’=tn(n+1)(2n+1)
B2 438+ 0l =1 (n+1)?

. (Vn € N), 4 no divide a n? + 2

4. (14+24+3+...+n)?=134+234+33+.. . +n?
16.
18.

1 1 1 1
I+§+_+“.+_n _2_nVn€N

L14+2+3+...+n<g@2n+1)>2

3. |ly—z|=|x—y|conz,yecR.

5. Sean x, y nimeros reales. Si x < y entonces
—y < —x.

7. Demuestre que V2 + /3 es irracional.

9. lz+y|<|z |+ |y | (Desigualdad Trian-
gular)

11. m divide a |m|, con m € Z
13. 64 es un factor de 72" + 16n — 1.

15. Sean z, y reales tales que =z < vy, de-
muestre que v < I < y.

2. | —z |=| x| para todo x € R.
4. 15 divide a 2*"~! para todo n € N.

6. Si p es un nimero racional no cero y pq es
un racional entonces ¢ es un racional.

8. 4[(9" — 1) para todo n € N.

10. Sean n y m ntmeros naturales tales que
x < y entonces x + 1 < y.

12. 2n < 2™ para todo n € N.

14. Si = e y son reales negativos y £ > 1
entonces x —y > 0

16. Sean £ y ¢ nuameros irracionales tales que

¢ + ( es un racional. Demuestre que £ — ( y
& 4 2( son irracionales.
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17. Sean n y m ntmeros naturales tales que z <
y + 1 entonces =z < y.
19. Sean m y n nimeros enteros con m|n y ¢ un
ndmero entero entonces m|nc
21. Sean m y n nameros enteros con n # 0. Si
m|n entonces |n| > |m|.
23. Sean m y n enteros enteros tales que m|n
entonces |m| divide a |n].

1 1
25. -5 < o para todon € N.
27. La suma de los cubos de tres niimeros natu-
rales consecutivos es divisible por nueve.

29. (x —y) es factor de (22"~ —92"~1) vn € N.

31. (@ +b)" < 2" 1(a™ +b") ¥n € N,

18. Si n y m son enteros y nm es impar entonces
n es impar y m es impar.

20. Sea x € R tal que 0 < x < 1 entonces 22 < x

22. Demuestre que si £ es un ntmero irracional
entonces /€ es un nimero irracional.

24. 14+ 2)" > 1+nrparaxz € R,z #0y
x> —1.

26. Demuestre que 5/(4%" — 1) ¥n € N

28.244+46+...4+2n=n(n+1)VneN

30. Sea & un nimero irracional entonces %

numero irracional.

€S un

33. Demuestre las siguientes propiedades por medio del principio de induccién matematica

a) 1222432~ 4 (=) 2 = (—1)r 12t ) vy e N

b) 1-242-3+3-4+...n(n+1)=

¢) sin(a) + sin(2a) + sin(3a) + . .. + sin(na) =

n(n+1)(n+2)
3

para todon € N
sin (%(n—l—l)a) sin(%a)

sin(%)

1 1 1 1  n(n+3)
1) 3t ssa T35t AT = 00D
e) Sea U, = % para a # 3, es decir, Uy = %, Uy = O‘Z:gg. Demostrar

que para todo n > 2 se cumplen las relaciones U,, = (a+3)U,—1y Uy, = afU,—2

34.

Sean by = aqi + 71y bo = ags + 9 con cada b;, ¢; y r; nimeros enteros para i = 1,2

y a € Z. Demuestre que a|(b; — by) si y solo si 1 = 7.

35.

irracional.

36. Demuestre que

Sea p # 0 un ndimero racional y & un ntmero irracional entonces .

£ es un ntmero

(1+V5)" — (1= VB)"

2n/5

es un numero entero para todo n € N.

37. Sean z1, 2o, . .

., zp, nameros complejos tales que |z;| < 1 para todo i = 1,2,...,n. Si

A1, A9, ..., A, son reales positivos tales que A\ + Ao + ...+ A, = 1 entonces

n
g NiZi
i—1

<1
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4.9.

Resumen Conceptual

. Método Directo: Se aplica en enunciados de la forma P — @), donde se supone P

como verdadera, hipotesis, y a través de una secuencia logica (que depende de los
objetos matemaéticos) para deducir @Q, tesis.

. Método Contraejemplo: Este método consiste en exhibir un ejemplo que no cumpla

la proposicion dada.

. Método de Casos: En los enunciados de la forma P; V P, — @, en la hipotesis

resulta la disjunciéon P; V P, el método de casos consiste en suponer P} como cierta y
concluir @ (P; — Q) a este se le llama el caso 7; luego se supone P, como verdadero
y se demuestra @) de nuevo (P2 — Q) que es el caso ii. Es decir, en cada caso se debe
demostrar la misma tesis.

. Método del Contrarreciproco: Algunos condicionales de la forma P — ) no son

sencillos de demostrar, para ello se hace uso del contrarreciproco ~ Q —~ Py se
demuestra éste condicional de forma directa.

. Método Indirecto: Cuando el condicional P — @ no es posible demostrarlo de

manera directa o a través del contrarreciproco, se niega tal condicional ~ (P — Q)
que equivale a PA ~ @, donde P (hipotesis) y ~ @ (negacion de la tesis) se asumen
como verdaderas hasta llegar a una contradiccion que se expresa =<=, lo cual implica
que ~ (P — Q) es falso y por tanto P — @ es verdadero. Este método se utiliza en
general cuando los objetos mateméticos no tienen una definicion precisa: Irracionales,
el conjunto vacio, entre otros.

. Método de Induccién: La base para la aplicaciéon del método de inducciéon matemati-

ca son los ntmeros naturales. Se aplica en tres pasos: En el primero se verifica que
la proposicion dada sea verdadera para el primer elemento, en un segundo momento
se supone que la proposicion es cierta para un cierto k& € N (hipotesis inductiva) y
el tercer paso es que demostrar que la proposicion es cierta para (k+ 1) € N (Tesis
inductiva).
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Capitulo 5

Teoria de Conjuntos

5.1. Ideas Preeliminares

Los conceptos de conjuntos y elementos se consideran como primitivos dentro de la teoria
ya que no admiten una definicién precisa, nos acercamos a dichos conceptos a través de las
nociones (ideas intuitivas) que se tienen sobre los mismos.

Nocién de Conjunto: Es una coleccion de objetos (personas, animales, cosas) Se deno-
tan con letras mayusculas latinas A, B, . .. o por medio de subindices A1, A, ... (indexados).

Nocién de Elemento: Son los objetos que conforman el conjunto. Se denotan con letras
latinas mintsculas z,v, z, . . ..

Los conjuntos pueden escribirse de dos formas

1. Extension: Se listas todos o algunos elementos del conjunto.

2. Compresiéon: Se enuncia una regla de formacion que describa todos los elementos de
dicho conjunto.

Ejemplo 5.1. El conjunto de todas las potencias de 2 mayores que 10 y menores que 300,
se puede representar como A = {16,32,64,128,256} la cual estd presentada por exten-
sion, mientras que A = {10 < 2" < 300 : n € N} que estd dada por compresion ya que
10 < 2™ < 300 representa la regla de formacion.

Ejemplo 5.2. El conjunto de todos los divisores de 36 se representa como Dsg y estd dado
por Dsg = {+1,4+2,£3,+4,4+6,+9, +£12, +18,+36} que estd representado por extension,
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mientras que por compresion, se escribe Dsg = {n € Z : n|36}.

Ejemplo 5.3. El conjunto de las potencias de —1 se escribe por extension y compresion
como P={-1,1} ={(-1)": n € N}.

Los conjuntos pueden representarse de dos forma, por medio de un Diagrama de Venn
en el cual los conjuntos se representan por medio de 6évalos, donde un cuadrado circunscribe
dichos conjuntos, conjunto que es llamado Universal o Referencial y que es representado
por medio de la letra U. La otra representacion es llamada Diagrama de Carroll en honor
de Lewis Carroll (ver [7]), en el que los conjuntos se representan por medio de rectangulos.
La primera representacion se limita a tres conjuntos, es por ello que se utilza los diagramas
de Carroll para la representacion de méas de tres conjuntos.

El conjunto que carece de elementos se denomina conjunto vacio y representa por medio
de ¢. Cada demostracién que implique el conjunto vacio se hara por medio del método
indirecto, ya que la definicién de tal conjunto es en si una contradiccién.

El nimero de elementos de un conjunto, sea finito o infinito, se le llama cardinal idea in-
troducida por George Cantor con la intension de comparar el tamatio de conjuntos infinitos
como los naturales y reales. Para el conjunto A se escribe card(A) para representar dicho
namero, otras representaciones son n(A), f(A) o |Al, la primera seréa la notacion utilizada
en estas notas.

Ejemplo 5.4. El conjunto A = {|z| : =2 < 2 < 10 Az € Z} estd conformado por los
nimeros A = {2,1,0,3,4,5,6,7,8,9} el cual posee 10 elementos, por lo que escribimos

card(A) = 10.

Ejemplo 5.5. El conjunto B = {(—=1)" + (—=1)™ : n,m € N} solo estd conformado por los
nimeros B = {0,2,—2,}, donde el elemento 2 surge cuando n y m son pares, el elemento
-2 resulta al ser ambos impares y 0 se presenta cuando uno es par y el otro es impar. En
este caso se tiene que card(B) = 3.

Ejemplo 5.6. En el caso del conjunto vacio se sigue que card(¢p) = 0, propiedad que se
demostrard posteriormente en el teorema 5.14; sin embargo no es el unico conjunto que
tiene cardinal cero, como la ecuacion z* +1 =0 en los reales no tiene solucion entonces el
conjunto A = {x € R : 22 + 1 = 0} tiene cardinal cero, card(A) = 0.

Ejemplo 5.7. El conjunto C = N posee infinitos elementos, por efectos prdcticos dicho
cardinal se representa como Ny el cual se lee Alef-cero, y escribimos card(N) = Nj.
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Aquellos conjuntos que poseen igual cardinal que los naturales se denominan numerables.
Veamos la siguiente tabla

‘nH Par ‘ Impar ‘Mu’ltiplos de 3| Potencias de 2
12=2-1]1=2(1)-1| 3=3-1 2 =21
214=2-2|3=2(2)—-1| 6=3-2 4 =22
316=2-3/5=23)—-1| 9=3-3 g =23
4||8=2-4]7=2(4)-1 12 =4 16 = 24

Se tiene que para cada natural n hay un entero par que es positivo, de alli que el cardinal
del conjunto de nimeros pares es el mismo que de los naturales; situacion andloga ocurre
con los impares, los miltiplos de 3, las potencias de 2 y otros mds conjuntos infinitos como
es el caso de los numeros irracionales.

Un tercer concepto primitivo en la teoria de conjuntos es la Relacion de pertenencia,
la cual se simboliza con la letra € y permite relacionar los elementos con un conjunto, asf
x € A significa que el objeto x hace parte del conjunto A o x es un elemento del conjunto
A, mientras que = ¢ A significa que = no es un elemento del conjunto A.

Ejemplo 5.8. Sea A = {x € ZT : 2|28 A z|42}, es decir, dicho conjunto estd conformado
por los divisores comunes de los enteros 28 y 42, de alli que A = {1,2,7}, haciendo uso de
la relacion de pertenencia se escribe 0 ¢ A, 1€ A, 4¢ AyT7¢e A

Ejemplo 5.9. Consideremos el conjunto B = {1,2,{1},{1,2},3, ¢}, es decir, B es un
conjunto que contiene otros conjuntos como los son {1}, {1,2} y el vacio, en cuyo caso se
transforman en elementos y escribimos {1} € B, {1,2} € B, ¢ € B, 3 € B pero {3} ¢ B;
ademds card(B) = 6.

5.2. Sistema Formal

El sistema formal relativo a la teoria de conjuntos se basa en los sistemas de la logica
proposicional y cuantificacional. En los ejemplos previos, los objetos o elementos de los
conjuntos han sido ntimeros pero no son los tnicos conjuntos que existen. Se hara uso del
simbolo € de la relacién de pertenencia como elemento propio del alfabeto.

5.2.1. Alfabeto

1. Los simbolos para nombrar conjuntos y para nombrar elementos, las letras del alfa-
beto, maytsculas para conjuntos y mintsculas para elementos.
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5.2.2.

5.2.3.

. El simbolo de la relaciéon de pertenencia entre un elemento y su conjunto: €.
. El simbolo de la relacién de igualdad entre objetos: =.

. Los simbolos logicos de la logica proposicional y cuantificacional: ~ (negacion), A

(conjuncion), V (disyuncion), — (condicional), «— (bicondicional), V (cuantificador
universal), 3 (cuantificador existencial).

. Signos auxiliares: Paréntesis que abren y que cierran (, ).

Reglas de Formaciéon

. Si P,y @ son férmulas, también lo son ~ P, P,AQ s, PoVQy, P — Qv P +—— Q,

para cualquier x.

. Si P, es una formula entonces (Va)(P,) y (3z)(P;) son formulas también.

. Las formulas del lenguaje solo se generan mediante las reglas anteriores.

Axiomas

El primer axioma relaciona los objetos de un conjunto por medio de la relacion de igualdad,
para lo que se presenta las propiedades reflexiva, simétrica y transitiva; ademas se presenta
la propiedad de sustitucion, la cual indica que si dos objetos son iguales entonces al ejem-
plificar la funcion proposicional, las dos proposiciones resultantes son equivalentes.

Axioma 5.1. Relacion entre elementos Para los elementos de un conjunto A se verifica

1140,

.

Reflexiva: Si x es un elemento entonces x = x
Simétrica: Si x, y son elementos tales que © =y entonces y = x
Transitiva: Si x,y, z son elementos tales que T =1y y y = z entonces x = z

Sustitucion: Si x,y son elementos tales que x =y y Ry es una funcion proposicional
cuya variable es x entonces (a/x) Ry < (b/x) Ry

El segundo axioma garantiza la existencia de un conjunto, lo cual es necesario para dar
validez a los teoremas de la teoria de conjuntos. El axioma tres indica que la relaciéon de
pertenencia € es exclusivo entre elementos y conjuntos en este orden; y no entre elementos.

Axioma 5.2. Axioma de FExistencia Existe al menos un conjunto.

Axioma 5.3. Axzioma de Objeto Si A es un conjunto y a € A entonces a ¢ a.
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5.2.4. Teoremas

El conjunto {5} posee un elemento, es por ello que su cardinal es 1, mientras que 5 es el
elemento que conforma dicho conjunto unitario de alli que 5 # {5}, pues el primero es
un elemento y el segundo un conjunto, se enuncia esta propiedad como el primer teorema
del sistema forma de la teoria de conjuntos. Los teoremas que se presentan a continuacion
tienen un referente historico en la paradoja de Russell.

Teorema 5.1. Si x es un objeto entonces x # {x}.

Demostracion [Método Indirecto, Prosal

Razonando por el absurdo se tiene que z = {z}. Puesto que = € {z}, por ser x su unico
elemento; por el axioma de sustituciéon 5.1, x € x; pero por el axioma de objeto 5.3 se sabe
que = ¢ z, lo cual es una contradiccion (=<«); asi x # {z}. 0O

Teorema 5.2. Si A es un conjunto entonces A ¢ A.

Demostracion [Método Indirecto, Prosal

Supongamos que A € A (1), entonces se puede decir que A es un elemento que se puede
denotar como a; al sustituir en la expresion (1) se sigue que a € a; pero, por el axioma de
objeto se sabe que a ¢ a (=<=) con esto se concluye que A ¢ A.

Teorema 5.3. La coleccion de todos los conjuntos no es un conjunto.

Demostracion [Método Indirecto, Prosal

Supongamos que el conjunto de todos los conjuntos si es un conjunto, lldmese B, ya que
dicho conjunto debe contener a todos los conjuntos entonces se debe contener a asi mismo,
es por ello que B es un elemento de B, por lo que B € B lo cual contradice el teorema 5.2
(=<), por la contradiccion se sigue que B no puede ser un conjunto y asi el conjunto de
todos los conjuntos no es un conjunto.

Ejemplo 5.10. Sean A ={(—1)"+2:n € N} y B={n € N:n|3} conjuntos presentados
por compresion, si se escriben por extension se sigue que A = {1,3} y B = {1,3}, es decir,
los conjuntos A y B tienen los mismo elementos, por lo que escribimos A = B; de la igual-
dad de los conjuntos se sigue la igualdad de los cardinales.
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En el ejemplo 5.10 los conjuntos A y B son iguales debido a que poseen los mismo elemen-
tos, esto se formaliza diciendo que dos conjuntos son iguales si al considerar un elemento x
en el conjunto A dicho elemento también esta en el conjunto B, se escribe x € A — x € B
y viceversa, es decir, si x € B entonces v € A, v € B — x € A; ambos condicionales dan
pie a un bicondicional como se presenta en el axioma 5.4.

Axioma 5.4. Axioma de Extension Los conjuntos A y B son iguales, se escribe A = B,
sty solo si (Vz)(x € Az € B)

El axioma de extension caracteriza la igualdad entre conjuntos, en el siguiente teorema
se presentan las propiedades de la igualdad entre conjuntos, entre las que se encuentra la
propiedad reflexiva, simétrica y transitiva. La demostracion de dicho teorema se basa en el
teorema de equivalencia 2.9 de la légica proposicional.

Teorema 5.4. Propiedades de la igualdad de Conjuntos Sean A, B y C conjuntos

entonces

1. Reflexiva A= A
2. Simétrica Si A = B entonces B = A
3. Transitiva Si A= B y B = C entonces A = C.

Demostracion [Método Directo, Afirmacion-razon]

lLacA—acA ... Medio excluido (ver 2.9)

2. Vo) (zx e Az e A) ... Generalizacion del V en 1
3.A=A ... Axioma de extension (5.4) en 3
4. A=1HB ... Hipotesis

5. (Vz)(x € A~z € B) ... Axioma de extension en 4

6. (Vz)(r e Bz e A) ... Teorema de equivalencia en 5
7. B=A ... Axioma de extensiéon en 6

8. A=1B ... Hipotesis

9. B=C ... Hipotesis

10. (Vz)(x € A~ x € B) ... Axioma de extension en 8

11. (Vz)(x € B <~z € C) ... Axioma de extension en 9
122a€ A—a€B ... Ejemplificacion (a/x) en 10

13.ae B—aclC ... Ejemplificacion (a/x) en 11
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4. aeA—acC ... Transitividad del «» entre 12 y 13
15. (Va)(zr € Az € () ... Generalizacion del V en 14
16. A=C ... Axioma de extensién en 15

Ejemplo 5.11. Consideremos que m es un nudmero entero, el cual genera los conjun-
tos A =1{n:1<n® <30} yB ={n:-3<n <5} dndeA={1,23}y
B = {3,2,1,0,4,5}. En dicho caso todos los elementos del conjunto A son elementos del
conjunto B, se dice que A estd incluido en B o que A es un subconjunto de B y se escribe
ACB.

Con base en el ejemplo 5.11 resulta que A es subconjunto de B si para x en A, z es un
elemento en B, lo cual se escribe como z € A — x € B, sin embargo el reciproco de dicho
condicional no es cierto, es decir, si x es un elemento en B, x no necesariamente es un
elemento en A; esto se formaliza en la siguiente definicion.

Definicion 5.1. Definicion de Inclusion Sean A y B conjuntos, se dice que A C B si
y solo si (Vz)(x € A— z € B)
U

rcA—x€B
ACB

El hecho que A C B se lee también como “A es parte de B”, “A esta contenido en B”, “B
contiene a A” 0 “B incluye a A”. La inclusiéon entre conjuntos indica que todos los elemen-
tos de A son elementos del conjunto B, pero no al contrario, en este caso se dice que A
es un subconjunto propio de B. El simbolo A C B indica que se presenta una de las dos
posibilidades A C B o A = B.

Si A no es un subconjunto de B se escribe A ¢ B donde al negar la proposiciéon dada en
la definicion 5.1 resulta ~ (Vz)(x € A — x € B), que por las propiedades de la logica
cuantificacional y proposicional se escribe

~Vzr)(reA—zx€B)— (r)(xrec ANz ¢ B) (5.1)

Es decir, si A no es un subconjunto de B debe existir un elemento en A pero no en B.
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Ejemplo 5.12. En los conjunto A, B y C' que se presentan a continuacion, n es un en-
tero, donde A ={n:0<n®>-n <12}, B={n:n[12} yC ={-2—(-1)":n € Z}
por lo que A = {=3,-2,-1,2,3,4}, B = {£1,4+2,43,+4,4+6,£12} y C = {-3,—1}. De
acuerdo con estos conjuntos se tiene que C C A y A C B; como ademds C C B entonces
la propiedad transitiva para la inclusion de conjuntos se satisface como se demuestra en el
siguiente teorema.

Teorema 5.5. Propiedades de la inclusion de Conguntos Sean A, B y C conjuntos
entonces

1. Reflexiva A C A
2. 51 AC B entonces AC B
3. A=Bsiysolosi ACByBCA

4. Transitiva Si A C B y B C C entonces A C C

Demostracion [Método Directo, Método de Casos, Prosal

Debido a que A = A por el teorema 5.4 entonces por el axioma de adjuncion resulta
(A= A)V (A C A), lo cual implica que A C A y asi la propiedad reflexiva respecto de C
se satisface. Para la demostracion del segundo literal se tiene por hipotesis que A C B, al
adjuntar la expresion A = B se tiene (A C B) V (A = B), de lo cual se concluye A C B.

Para la demostracion del literal 3 es necesario la verificacion de dos condicionales, se inicia
de izquierda a derecha.

“=" En este caso la hipotesis es que A = B, por el axioma de extension se tiene que
(Vx)(z € A < x € B), haciendo uso de la ejemplificacion se escribe a € A <> a € B que por
la definicion de bicondicional resulta (a € A — a € B)A(a € B — a € A) (1). Simplificando
en (1) se obtiene el condicional a € A — a € B lo cual por generalizacion del cuantificador
universal se tiene (Vz)(x € A — x € B) que por la definicién de inclusion A C B (2). Si en
(1) se simplifica el segundo condicional @ € B — a € A se demuestra de igual forma que
B C A (3); por conjuncion entre (2) y (3) se concluye que (A C B) A (B C A).

“<" En este caso se supone que A C By B C A son ciertas, por la definiciéon de inclusion
5.1 se tiene que (Vz)(x € A — z € B)A(Vz)(x € B — x € A), por medio de las propiedades
del cuantificador universal resulta la expresion (Vz)(z € A —-x € BNz € B—x € A)y
asi por la definicion del bicondicional (Vz)(z € A <> x € B) y concluir que A = B.
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Para la demostracion del literal 4, por hipotesis se tiene que A C By B C C, hipodtesis que
generan cuatro casos, el primero a considerar es que A = By B = C, por el teorema 5.4
resulta A = C, que por adjuncion se concluye A C C.

El segundo caso a considerar es que A = By B C C, por sustitucion A C C'y por el literal
2 de este teorema A C C. Si hacemos ahora que A C B y B = C entonces al sustituir
queda A C C'yasi ACC.

El cuarto y ultimo caso es que se presenten las inclusiones propias A C By B C C, por
la definicién de inclusion se escribe (Vz)(z € A — z € B)y (Vz)(x € B — z € (), al
ejemplificar resultan los condicionalesa € A — a € Bya € B — a € C, que por el teorema
de transitividad (ver 2.1) de la logica proposicional se tiene a € A — a € C, se generaliza
(Vz)(x € A — 2z € C) y por definicion de inclusion A C C, y concluir en cada caso que
ACC. p

Axioma 5.5. 5i X es un conjunto y A es una coleccion de objetos tal que A C X entonces
A es un conjunto.

Axioma 5.6. Axioma del conjunto vacio La coleccion de todos los objetos tales que
x€Ayx¢ A esun conjunto llamado vacio, esto es ¢ :={x:x € ANz ¢ A} donde A es
un conjunto.

Con base en el axioma del conjunto vacio se tiene que si x es un elemento del conjunto vacio
entonces © € ANz ¢ A, se escribe z € ¢ - x € ANz ¢ A; al hacer esta consideracion
se obtiene una contradicciéon puesto que un elemento no puede hacer parte de un conjunto
y no hacer parte al mismo tiempo, esto se escribe en términos de la logica proposicional
como PA ~ P, cuya tabla de verdad genera una contradiccién.

Por la propiedad de D’Morgan (ver 2.15) se sigue que = ¢ ¢ es equivalente a

rg¢po~(reANs¢gA) g AVee A (5.2)

Cada una de las propiedades que implique el conjunto vacio deben demostrarse por medio
del método indirecto, ya que la misma definicién genera una contradiccién. En el teore-
ma 5.6 se demuestra que el vacio no posee elementos y que ademas es un subconjunto de
cualquier conjunto.

Teorema 5.6. Propiedades del conjunto vacio Sea A un conjunto entonces

1 (Vo)(x & ¢)
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2. ¢C A

Demostracion [Método Indirecto, Afirmacion-razon|

1.~ (Vz)(z ¢ ¢) ... Negacion de la tesis
2. (Fz)(x € ¢) ... Negacion del cuantificador universal en 1
3.acq¢ ... Ejemplificacion (a/z) en 2
4. ac ANad A ... Axioma del conjunto vacio (5.6) en 3
=< ... Tabla de verdad de PA ~ P
5. (Vz)(x ¢ ¢) ... Método Indirecto en 1
6.9 Z A ... Negacion de la tesis
7. Existe a tal quea € p Na ¢ A ... Negacion de la inclusién en 6
8.a€¢ ... Simplificacién en 7
=& ... El vacio carece de elementos, propiedad anterior
9.0 CA ... Método indirecto en 6
10, C A ... Adjuncién en 9

Sea A el conjunto determinado por A = {z € N : 22 — 1 = 0}. Al factorizar la expresion
22 — 1 = 0 resulta que los dos posibles valores que puede asumir la variable son z = 1
y x = —1, sin embargo, el conjunto A solo estd dado por A = {1} ya que = debe ser un
numero natural, en dicho caso se tiene que A C N y el conjunto de los naturales actua
como el conjunto de referencia o también llamado universal denotado con la letra U. Al
cambiar el conjunto referencial, sus subconjuntos pueden variar notablemente, por ejemplo,
si A= {z:2?+1 =0} equivalente a la soluciéon de la ecuacién 2> = —1, en el caso en que
el conjunto referencial sean los reales U = R entonces A = ¢, mientras que si se hace U = C

(ntmeros complejos) entonces A = {i, —i}. Estos casos motivan la definicion siguiente.

Definicion 5.2. Conjunto Universal El conjunto U := {z : v € AV x ¢ A} se llama
conjunto universal o referencial, donde A es un conjunto arbitrario.

Por lo tanto = € U siempre que x € AV z ¢ A para A un conjunto arbitrario, se escribe
x €U < x € AVzx ¢ A, en términos de la logica proposicional se escribe PV ~ P,
proposicion que es cierta debido al teorema del medio excluido (ver 2.2). En el caso en que
x ¢ U entonces por la propiedad de D’Morgan se tiene la equivalencia

r¢U—x¢g ANz e A (5.3)

Lo cual es una contradiccion ya que se escribe PA ~ P, la equivalencia 5.3 tiene una
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relacion directa con el axioma del conjunto vacio (5.6), para lo que x ¢ U < x € ¢ y
viceversa ¢ ¢ ¢ «— x € U.

5.3. Operaciones entre conjuntos

Intuitivamente, una operaciéon entre conjuntos se puede tomar como una regla tal que al
relacionar de determinada manera dos conjuntos, el resultado es un tercer conjunto: Entre
las operaciones usuales de conjuntos se encuentran la union, la interseccion, la diferencia
y la diferencia simétrica, ademéas del complemento. Tales operaciones tienen una relacion
directa con los operadores de la légica proposicional, ademéas de una representacion grafica
en un diagrama de Venn a partir de areas sombreadas.

Consideremos que un elemento x esté en la uniéon entre los conjuntos A y B, se escribe x €
(AU B) siempre que x sea un elemento en la region sombreada que aparece a continuacion

U

A B

Consideremos las proposiciones P: “x € A” y Q: “x € B”, con base en el grafico relativo a
la unién, un elemento x tiene cuatro posibilidades para ser ubicado

1. El elemento x estd en A y en B por lo que las proposiciones P y ) son verdaderas. De
igual forma la proposicion = € (AU B) es verdadera ya que el elemento se encuentra
en la region sombreada.

2. El elemento = estd en A pero no en B de alli que P es una proposicién verdadera,
pero @ falsa; mientras que la proposicion x € (A U B) es verdadera.

3. El elemento x no esta en A pero si en B, para esta situacion la proposicion P es falsa
y @ es verdadera, donde = € (A U B) es una proposicion verdadera.

4. La ultima alternativa es que x no esté ni en A ni en B lo que produce que las
proposiciones P y ) sean falsas; para esta situacion la proposicion = € (AU B) es
falsa ya que x no estéa en la region sombreada.

En la siguiente tabla se resume esta situacion.
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‘ Casos H x € (AUDB) H‘ P:“z e A” | Conector ‘ Q:“ve DB’

\Y A% A%
2 \Y \Y F
3 A% F \Y
4 F F F

Notese que el conector de logica proposicional que produce que esta tabla de verdad sea una
tautologia es la disjuncion, asi x € (AUB) es equivalente a la proposicion (x € A)V (z € B),
esto induce la siguiente definicion.

Definicion 5.3. Union entre conjuntos Sean A y B conjuntos entonces
AUB:={z:x€ AVz e B}

representa la union entre los conjuntos A y B.

Se escribe z € (AUB) «» x € AV € B; es decir, un elemento = pertenece a la uniéon entre
dos conjuntos A y B si esta en cualquiera de los dos o en lo dos. Si  no es un elemento
de la union (z ¢ (AU B)) entonces con base en la definicién 5.3 y la propiedad D’Morgan
resulta

r¢(AUB)—x¢ ANz ¢ B (5.4)

Por lo que el elemento x no pertenece a la union si y sélo si no pertenece ni al conjunto A
ni al conjunto B.

Ejemplo 5.13. Sean A = {x : 2 =322+ 20 =0}, B={r+7:2 = —6,-7,-8,-9} y
C ={-3,-2,—1,0} conjuntos. Para determinar que elementos conforman el conjunto A
es mecesario factorizar la expresion x° — 3% 4+ 2x = 0 para lo que z(z — 1)(z — 2) = 0, con
base en esto, los conjuntos A y B se escriben como A ={0,1,2} y B ={1,0,—1,—2}.

En este caso AU B = {0,1,2,—1, -2}, mientras que BU A = {1,0,—1,—2,2}, es de-
cir, AUB = BU A, por lo que se deja entrever que la union entre conjuntos cumple la
propiedad conmutativa, ademds se presentan las inclusiones entre conjuntos A C AU B vy
B ¢ AU B. Al unir el conjunto C con si mismo resulta C UC = {-3,-2,-1,0} = C y
ast la propiedad de idempotencia parece ser vdlida. Debido a que AU B = {0,1,2, -1, -2}
entonces (AUB)UC = {0,1,2,—1,—-2,—3}; por otro lado BUC = {1,0,—1,—2,—-3} y ast
AU(BUC) ={0,1,2,-1,—2,-3}, con esto se concluye que (AUB)UC = AU (BUCQC),
es decir, se verifica la propiedad asociativa.
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Teorema 5.7. Propiedades de la union entre conjuntos Sean A, B, C' y D conjuntos
y U el conjunto universal entonces

1. Idempotencia AUA=A 2. Conmutativa AUB=BUA
3. Asociativa (AUB)UC =AU (BUC) 4. ACAUByBCAUB
5 AuU=U 6. AUp=A

7.5 ACByCCD entonces AUCCBUD 8 SiACByCCB entonces AUC C B

Demostracion [Método Directo, Prosa|

Con base en el teorema de idempotencia 2.10 se tiene que a € AVa € A < a € A, con base
en la definicién de union 5.3 se escribe a € (AU A) < a € A al generalizar respecto del
cuantificador universal se tiene (Vz)(x € (AU A) <>z € A) y por el axioma de extension
se concluye que AU A = A.

Ahora bien, por la propiedad conmutativa 2.8 la equivalencia a € AVa € B < a € BVa € A
es cierta, en ambos casos se hace uso de la definiciéon de uniéon a € (AU B) <> a € (BU A),
por la generalizacion universal se sigue que (Vz)(x € (AUB) < x € (BUA)) lo que permite
concluir que AU B = B U A, es decir, la unién cumple la propiedad conmutativa.

Por la propiedad asociativa 2.16 respecto de la disjuncién es verdadera la equivalencia

(ae AVaeB)VaeC«—acAV(aeBVacl)

Si en cada paréntesis se hace uso de la definicion de unién resulta que la proposicion
a€ (AUB)Va e C < aec AVa e (BUC) es verdadera, de nuevo se aplica dicha definicion
para lo que a € [([AUB)UC] < a € [AU (BUC)], por la generalizacion universal y el
axioma de extension se sigue que (AUB)UC = AU (BUCQ).

Con base en el axioma de adjuncién de la logica proposicional es cierta la proposicion
a€A—ae AVa € B, equivalente a a € A — a € (AU B) (definicién de union) al
generalizar respecto del cuantificador universal (Vz)(x € A — = € (AU B)), que por la
definicién de inclusion 5.1 se tiene que A C A U B, lo cual equivale a A C AU B por el
literal 2 del teorema 5.5 Por igual razonamiento se demuestra que B C AU B.

Demostremos ahora que AU U = U, con base en las propiedades de la l6gica proposicional
se obtienen las siguientes equivalencias

a€(AUB)—ac€AVacelU
—~a€AV(acAVagA)
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—(aeAvVacA)Vvag A
—~a€cAVag¢gA

Por la definicién del conjunto universal se concluye que AUU =U. g

La interseccién, que se denota N, hace alusién a los elementos comunes entre los conjuntos
Ay B, es por esto que el conector a utilizar es la conjuncion. El area sombreada que
representa esta operacion es

U

Por lo tanto, x € (AN B) si y solamente si x € Ay z € B.

Definicion 5.4. Interseccion entre conjuntos Sean A y B conjuntos entonces
ANB:={zx:x€ ANz € B}

representa la interseccion entre los conjuntos A y B.

Con base en la definicion, el hecho que un elemento x no esté en la intersecciéon entre los
conjuntos es por que z ¢ AV x ¢ B como se presenta a continuacion

r¢(ANB)—>x¢ AVae ¢ B (5.5)

Se presenta asi una relacion directa entre la negacion de la intersecciéon con la union y
viceversa entre la negaciéon de la unién con la intersecciéon. En el caso en que la interseccién
entre dos conjuntos sea vacia (AN B = ¢) se dice que A y B son conjuntos disjuntos,
es decir, dos conjuntos son disjuntos si no tienen elementos comunes. Si tanto A como B
son el conjunto vacio entonces ¢ N ¢ = ¢, pues ¢ no tiene elementos y por tanto no hay
elementos comunes, en general, para cualquier conjunto A se sigue que AN ¢ = ¢. Mientras
que ¢ U ¢ = ¢ por la propiedad de idempotencia.

Ejemplo 5.14. Sean A = {n € N: 0 < n? <20} y B = {m € N : m|10}, bajo estas cir-
cunstancias ambos conjuntos se escriben como A ={1,2,3,4} y B ={1,2,5,10}, con base
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en la definicion de la interseccion de conjuntos 5.4, AN B lo conforman aquellos elementos
comunes es por esto que AN B ={1,2} = BN A, asi como ANA=1{1,2,3,4} = A y las
propiedades conmutativas e idempotencia son vdlidos asi como en la union.

Ejemplo 5.15. Sean My = {n € N : 2|n}, M3 = {n € N: 3|n} y My = {n € N : 4|n},
es decir, el conjunto My son aquellos niumeros enteros divisibles por 2, o enteros pares o
multiplos de 2, por extension se escriben como My = {2,4,6,8, ...}, My = {4,8,12,16,...}
y Ms = {3,6,9,12,...}. La interseccion de My y M3 estd representada como My N Mg =
{6,12,18,24...} y representa los maltiplos de 6, se escribe Mg = Mo N Mg. Mientras que
My C My por lo que MoN My = My y My U My = Mo, es decir, la interseccion es el menor
de los dos conjuntos: My y la union el mayor de ambos conjuntos: Ms.

Teorema 5.8. Propiedades de la interseccion entre conjuntos Sean A, B, C' y D
conjuntos y U el conjunto universal entonces

1. Idempotencia AN A=A 2. Conmutativa ANB=BNA
3. Asociativa (ANB)NC =AnNn(BNC) 4. ANBCAyANBCB
5. ANU=A 6. AN =¢

7.5 ACByCCD entonces ANCCBND 8 5 ACByCCB entonces ANCCB
9. ACB siysdlosi ANB=A

Demostracion [Método Indirecto, Método Directo, Método de Casos, Afirmacion-razon|

1L.LANG # ¢ ... Negacion de la tesis literal 6
2. (Fz)(z € (AN g)) ... Por ser AN ¢ no vacio en 1
.acANacd ... Definicion de interseccion (5.4) en 2
4. a€ ¢ ... Simplificacion en 3

=< ... El vacio carece de elementos
5 AN¢=¢ ... Método indirecto en 1
6. ACB ... Hipotesis literal 7
7.C0CD ... Hipotesis
8. (ACB)AN(C C D) ...Casoientre 6y 7
9.(aeA—aeB)AN(acC —a€D) ... Ejemplificacion y definicién de inclusion en 8
10. (@€ ANae(C)— (ae BNa€ D) ... Adiciéon entre implicaciones en 9
11.ac (ANC) —ae (BND) ... Definicion de interseccion en 10
12. (Vx)(z € (ANC) —x € (BND)) ... Generalizacion del V en 11
13. AnCcBnNnD ... Definiciéon de inclusion en 12

4. AnCCBND ... Propiedades de la inclusion en 13
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15. ACB .. Hipotesis literal 8

16.CCB .. Hipotesis

17 AnCCBNB .. Utilizacion literal anterior entre 15 y 16
8. ANCCB .. Idempotencia de la interseccién en 17
=

19. ACB .. Hipotesis literal 9

20 ANBCA .. Literal 4 de este teorema

21. AC A .. Reflexiva de la inclusiéon 5.5
22.ANACANB .. Literal 7 de este teorema entre 19 y 21
23. ACANB ..idempotencia de la interseccién en 22

24.

(ANBCA)A(ACANB)

.. Conjuncioén entre 23 y 20

25, ANB=A .. Propiedades de la inclusion en 24
P

26. ANB=A .. Hipotesis

27.a € A .. Hipotesis auxiliar

28.a€ (ANB) .. Axioma de extension entre 26 y 27
29.a€ ANaeB .. Definicion de interseccién en 28
30.a € B .. Simplificaciéon en 29
3l.aecA—a€eB .. Método directo entre 27 y 30

32. (Vx)(x € A — x € B) .. Generalizacién universal en 31
33. ACB .. Definicion de inclusion en 32
34. ACB .. Propiedades de la inclusion en 33

Ejemplo 5.16. Considérese los conjuntos A = {0,1,2,3,5}, B = {-2,—-1,0,1,2} y

C = {-3,-1,0,1,3}, en este caso AN B = {1,2} y ANC = {0,1,3}, la union de es-
tos dos conguntos precedentes conduce al conjunto (AN B)U (AN C) = {1,2,0,3} (1).
Por otro lado, BUC = {-2,-1,0,1,2,-3,3} que al intersectarlo con el conjunto A
se obtiene AN (BUC) = {0,1,2,3} (2). Entre las igualdades (1) y (2) se sigue que
AN(BUC)=(ANB)U(ANC), la cual representa la propiedad distributiva de la inter-
seccion respecto de la union.

En el siguiente teorema se enuncian las dos propiedades distributivas: De la unién respecto
de la interseccion y de la intersecciéon respecto de la unién, las cuales se demuestran con
base en el teorema 2.17 relativo a la propiedad distributiva de la logica proposicional.

Teorema 5.9. Propiedad Distributiva Sean A, B y C conjuntos entonces
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1. AnN(BUC)=(AnB)U(ANC)

2. AU(BNC)=(AUB)N(AUC)

Demostracion [Método Directo, Prosa|

En la logica proposicional se demostré la propiedad distributiva 2.17 para proposiciones
donde

ac AN(aeBVael)— (acANaeB)V(ae AnacC)

Por las definiciones de unién e interseccion la proposicion anterior es equivalente a

ac ANa€e (BUC)—ac(ANB)Vae (ANC)
ac[AN(BUCQ)| < ac[(ANB)U((ANC)]

Con base en la generalizacion universal y en el teorema de extension se concluye que
AN(BUC)=(ANB)U(ANC). Iniciando con la proposicion

ac AV(aeBNae(C)— (ac AVae B)AN(ae AVacC)

Se demuestra de forma analoga que AU(BNC)=(AUB)N(AUC). g

Definicion 5.5. Complemento de un Conjunto Sea A un subconjunto de U entonces
el conjunto A°:={x:x €U ANx ¢ A} es llamado el complemento de A respecto de U.

Con base en la definicion z € A°si y solosi x € U Ax ¢ A, puesto que x € U es una
proposicién verdadera para todo x, ya que U es el conjunto universal entonces simplemente
se escribe z € A¢ < x ¢ A. El hecho que z € A° también se puede escribir por medio del
concepto de negacion como ~ (x € A), por lo que si # € A entonces con base en la doble
negacion resulta ~ (x ¢ A) y se escribe v € A <~ (z ¢ A). En el siguiente grafico se
muestra por areas sombreadas que es el complemento

U
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Ejemplo 5.17. Se asume como conjunto referencial o U = {1,2,3,...,7,8,9} y se con-
sideran los subconjuntos A = {n € N : n|12} y B = {m : m? — Tm + 12 = 0}, donde
A = {1,2,3,4,6} y B = {3,4}. Los complementos de ambos conjuntos respecto de U
estan dados por A° = {5,7,8,9} y B¢ = {1,2,5,6,7,8,9}, ndtese que B C A mien-
tras que A€ C B€. Ademds, al intersectar y unir un conjunto con su complemento resulta
AUA®=1{1,2,3,4,5,6,7,8,9} =U y AN A = ¢. Puesto que A° = {5,7,8,9} entonces el
complemento de este complemento estd dado por (A°)¢ = {1,2,3,4,6} = A.

Teorema 5.10. Propiedades del complemento de un conjunto Sean A y B subcon-
juntos de U entonces

1. A= B sii A°= B° 2. AUA=U

3. (A=A 4.U°=¢

5. ANAc=¢ 6. AC B siy solo si B¢ C A°
7. ¢¢=U

Demostracion [Método Directo, Método Indirecto, Afirmacion-razon|

l.~(a¢gA)—ac A ... Doble negacion

2.~(a€ A% —ac A ... Definicién de complemento 5.5 en 1

.ae (A —acA ... Definicion de complemento en 3

4. (Vz)(x € (A°) - x € A) ... Generalizacion del V en 3

5. (A=A ... Axioma de extension en 4

6.acU—acAVadgA ... Definicién del conjunto universal

7T.a€elU—a€ AVac A ... Definicion del complemento en 6

8.acelU—ac(AUAS ... Definicién de union en 7

9. Va)(z €U -z € (AU A9) ... Generalizacion del V en 8

10. U = AU A° ... Axioma de extensiéon en 9

11. AUA=U ... Reflexiva de la igualdad en 10

12. ANA“# ¢ ... Negacion de la tesis

13. (3x)(z € (AN A%)) ... Por ser AN A° no vacio en 12

14.a€ ANa € A° ... Definicién de interseccion en 13

15,a€ ANa¢ A ... Definicién de complemento en 14

16. a € ¢ ... Axioma del conjunto vacio en 15
=< ... El vacio carece de elementos

17. ANA°=¢ ... Método indirecto en 12
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18. U #£ ¢ ... Negacion de la tesis
19. (Fz)(z € U°) ... Por ser U no vacio en 18
20.a ¢ U ... Definicién del complemento en 19
2l.ac ANa¢ A ... Negacion de la definicion del conjunto U en 20
22.a € ¢ ... Axioma del conjunto vacio en 21
=& ... El vacio carece de elementos
23.U=¢ ... Método indirecto en 22

Ejemplo 5.18. Sean A = {2,3,5,7} y B ={1,2,3,4,5} conjuntos enmarcados en el con-
gunto referencial U = {1,2,3,4,5,6,7,8}, en este caso AU B = {2,3,5,7,1,4} para lo que
el complemento de la union es (AU B)¢ = {6,8} (1). Por otro lado, los complementos de A
y B son A°={1,4,6,8} y B¢ ={6,7,8} cuya interseccion es A° N B¢ = {6,8} (2) y entre
los conguntos (1) y (2) se escribe (AU B)¢ = A°N B¢,

En el ejemplo 5.18 se ilustré la propiedad de D’Morgan en términos de conjuntos, en este
caso se presento la negaciéon de la unién pero también se presenta la negaciéon de la inter-
seccidén como se demostrard en el siguiente teorema para el cual es necesario hacer uso de
la propiedad de D’Morgan de la légica proposicional.

Teorema 5.11. Ley de D’Morgan Sean A y B conjuntos entonces

1. (AUB)¢ = A°NB°
2. (AN B)¢ = A°U B¢

Demostracion [Método Directo, Prosa|

Por la ley de D’Morgan 2.15 resulta que ~ (a € AANa € B) < (a ¢ AVa ¢ B), por la
definicion de la interseccion se escribe ~ (a € (AN B)) <> (a ¢ AV a ¢ B), ahora bien, si se
aplica la definicién del complemento de un conjunto se obtiene la proposicién equivalente
a€(ANB)¢« (a€ A°Va € B,y por la definicion de union

a€(ANB) —aec (A°UB°

Con base en la generalizacion universal y el axioma de extension se concluye que (ANB)¢ =
A°U B€. Por igual via se demuestra que (AU B)® = A°NB°. ¢

Definiciéon 5.6. Diferencia entre conjuntos Sean A y B conjuntos entonces el conjunto
A—B:={x:x€ ANz ¢ B} se llama diferencia entre los conjuntos A y B.
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Con base en la definicion se tiene x € (A — B) < x € AANx ¢ B, por lo que = ¢ (A — B)
siempre que

r¢(A-B)—x¢ AVzeB (5.6)
En el siguiente esquema se representa la diferencia entre conjuntos.

U

A B

Ejemplo 5.19. El conjunto universal estard representado por U = {1,2,3,4,5,6,7,8,9},
mientras que A = {2,4,6,8}, B={n € N:n|6} yC ={n € N:4 <n?+1 <26},
es decir, los conjuntos B y C se escriben como B = {1,2,3,6} y C = {2,3,4,5}. En
tal caso A — B lo constituyen aquellos elementos que estin en A pero no en B, es decir,
A — B = {4,8}, mientras que B— A ={1,3}, asi A— B # B — A, por lo que la propiedad
conmutativa no se satisface. Ahora (A— B)—C = {8}, puesto que B—C = {1,6} entonces
A—(B-C)=1{2,4,8}, asi (A—B)—C # A—(B—C), no es tampoco asociativa la diferencia
entre conjuntos. Por dltimo los complementos de A y B relativos a U son A° ={1,3,5,7,9}
y B¢ = {4,5,7,8,9} cuya diferencia entre los complementos es B¢ — A® = {4,8}, para lo
que resulta B¢ — A=A — B.

Teorema 5.12. Propiedades de la diferencia entre conjuntos Sean A y B subcon-
Juntos de U entonces

1.LA-A=¢ 2.A-—B=ANB° 3. A—¢p=A

4.U— A= A° 5 A—BCA 6. A-U=2¢

7.7 A-—B=¢sii ACB 8. A— B y AN B son disjuntos 9. A— B y A°N B¢ son disjuntos

Demostracion [Método Indirecto, Método Directo, Afirmacion-razon|

l.ac ANa¢ B—ac ANa€ B° ... Definicion del complemento
2.a€(A—B)—ac (AN B° ... Definicion de interseccion en 1
3. (Vx)(x € (A—B) < x € (AN B°)) ... Generalizacion universal en 2

4. A— B=AN B¢ ... Axioma de extension en 3
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5. A—A#¢
6. (Vz)(z € (A—A))
T.ac ANa¢ A
8.a€ ¢

S
9.A-A=9¢

10. A—¢=ANge
11.A—¢=ANU
1224—¢=A

=
13.A-B=¢
14.a€ A
15.a ¢ B
16.a€ ANa¢ B
17.a € (A— B)
18.a€ ¢

=<
19.a€ B
200aceA—aeB
21. (Vz)(xr € A — x € B)
22.ACB
23. ACB

=

24. ACB

25. A—B# ¢

26. (Vz)(x € A— z € B)

27.a € A—a€B

28. (Fz)(x € (A— B))

29.a€ ANa¢ B

30.a ¢ B

3l.a¢g A

32.a€ A

33.ac Aha¢ A
S

34. A—B=¢

.. Negacion de la tesis

..Por ser A — A no vacio en 5

.. Definicion de la diferencia en 6
.. Axioma del conjunto vacio en 7
.. El vacio no tiene elementos

.. Método indirecto en 8

.. Literal 2 de este teorema

.. Propiedades de la interseccion en 2

.. Hipotesis

.. Hipotesis auxiliar

.. Negacion de la tesis

.. Conjuncioén entre 14 y 15
.. Definicion de la diferencia en 16
.. Sustitucién de 13 en 17
.. Por carecer el vacio de elementos
.. Método indirecto en 15

.. Método directo entre 14 y 19
.. Generalizacion universal en 20
.. Definicién de inclusiéon en 21

.. Propiedades de la inclusién en 22

.. Hipotesis

.. Negacion de la tesis

.. Axioma de inclusion en 24

.. Ejemplificacion (a/z) en 26

.. Por ser A — B no vacio en 25
.. Definicion de diferencia en 28
.. Simplificacion en 29

.. Modus tolendo tolens entre 27 y 30
.. Simplificacién en 29

.. Conjuncion entre 31 y 32

.. Tabla de verdad de PA ~ P
.. Método indirecto en 25

.. Propiedades del complemento 5.10 en 1
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Definicion 5.7. Diferencia Simétrica Sean A y B conjuntos. La diferencia simétrica
entre los conjuntos A y B denotado AAB es el conjunto de los elementos que pertenecen a
la union pero no a la interseccion. Es decir,

AAB:={z:z € (AUB)ANz ¢ (ANB)}

FEquivalente a AAB = (AU B) — (AN B).

El siguiente esquema hace alusion a la diferencia simétrica entre conjuntos, donde se evi-
dencia ademéas que AAB se puede encontrar también como la unién entre las diferencias

A—-ByB—-A.
U

Ejemplo 5.20. Los conjuntos A = {r € R : 22 =52 +6 = 0} y B = {n € N : 3|n}
son subconjuntos de U = {2,3,4,5,6,7,8}; para lo que A = {2,3} y B = {3,6}. Tan-
to la union y la interseccion de A y B son AU B = {2,3,6} y AN B = {3}, por lo
que AAB = {2,6} = BAA. Puesto que A° = {4,5,6,7,8} y B® = {2,4,5,7,8} y asi
A°AB® = {2,6}, de donde se presenta la igualdad A°AB® = AAB. De una forma similar
se escribe A°AB = {3,4,5,7,8} cuyo complemento es (A°AB)¢ = {2,6} = AAB.

Teorema 5.13. Propiedades de la Diferencia Simétrica Sean A, B y C conjuntos y
U el conjunto universal entonces

1. AAB=(A—-B)U(B—-A) 2. Conmutativa AAB = BAA
3. Asociativa (AAB)AC = AA(BAC) 4. AAA = ¢
5. AAp=A 6. AAU = A€

7. AAB = ¢ sii A= B

Demostracion [Método Directo, Método Indirecto, Prosal

Por la definiciéon 5.7 se tiene que AAB = AU B — AN B, por medio de las propiedades
de la diferencia entre conjuntos (teorema 5.12 literal 2) AAB = (AU B) N (AN B)¢, con
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base en la ley de morgan 5.11 resulta AAB = (AU B) N (A°U B¢), al aplicar la propiedad
distributiva 5.9 dos veces se tienen las igualdades

AAB =[AN(A°UB°)|U[BN(A°U B°)]
=[(ANAYUANBY)U[(BNA°)U (BN B9

Debido a que BN B¢ = ¢ y todo conjunto unido con el vacio es el mismo conjunto entonces
AAB = [pU(ANB)|U[(BNA°)U¢| = (AN B°)U (BN A°), lo cual permite concluir que
AAB = (A—B)U (B — A) de acuerdo con las propiedades de la diferencia entre conjuntos.

Por aplicacion de la propiedad antes demostrada BAA equivale a BAA = (B—A)U(A—B),
al ser la union conmutativa entonces BAA = (A — B)U (B — A) y asi BAA = AAB por
lo que la conmutatividad de la diferencia simétrica se verifica.

Con base en el primer literal de este teorema se tiene que AAA = (A— A)U(A— A), puesto
que A—A = ¢ por las propiedades de la diferencia (teorema 5.12) entonces A—A = pU¢p = ¢.
De igual forma se tiene que AA¢ = (A—¢)U(¢p—A) (1),como A—p=Ay¢dp—A=¢al
sustituir en (1) resulta AA¢p = AU ¢ = A.

“=" En este condicional la hipotesis es que AAB = ¢, debe demostrarse que A = B, lo
cual supondremos falso A # B, por lo que existe un elemento = tal que © € AAx ¢ B, es
decir, x € (A — B), como (A— B) C (A—B)U (B — A) entonces z € (A— B)U (B — A),
con base en el literal (1) de este teorema se tiene que = € (AAB), por lo que AAB # ¢, lo
cual es una contradiccion con la hipotesis y asi A = B.

“<” En este caso la hipotesis es que A = B, que por sustitucion AAB = AAA = ¢ que
era el propésito.

La demostracion de la propiedad asociativa respecto de la diferencia simétrica se presenta
en el apéndice.

5.4. Cardinalidad

Para las demostraciones respecto de la cardinalidad se necesita tener presente el concepto
de particién, no conjunto de partes. Se dice que dos conjuntos A y B no vacios, particionan
al conjunto universal U si éste se puede escribir como la unién de subconjuntos disjuntos
determinados por A y B a través de operaciones.

Para dos conjuntos A y B se requieren cuatro subconjuntos disjuntos como son: A — B,
ANB, B— Ay A°N B¢ La particion sirve para escribir cualquier conjunto en términos de
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éstos, asi el conjunto A se puede escribir como A = (A — B) U (AN B), el conjunto A°U B¢
como A°UB®=(A—-B)U(B—A)U(A°N B°).

Ejemplo 5.21. En el caso en que los conjuntos A y B sean iguales se tiene que card(A) =
card(B); sin embargo el reciproco de esta situacion no siempre se presenta, es decir, si
card(A) = card(B) entonces no necesariamente A = B, para ello se consideran los conjun-
tos A ={1,4} y B = {2,3} cuyo cardinal es el mismo pero no sus elementos. Este situacion
motiva el siguiente axioma.

Axioma 5.7. Axioma de Igualdad St A y B son conjuntos tales que A = B entonces
card(A) = card(B).

Ejemplo 5.22. Sean U = {1,2,3,...,13,14,15} como conjunto referencial y los con-
juntos A y B dados por los miltiplos de 3 menos el 3 y los nimeros primos de forma
respectiva, asi A = {6,9,12,15} y B = {2,3,5,7,11,13} con cardinales card(A) = 4
y card(B) = 6, bajo estas condiciones A y B son disjuntos (AN B = ¢) y ademds
AUB = {6,9,12,15,2,3,5,7,11,13} donde card(A U B) = 10, para lo que se presenta
la igualdad card(A U B) = card(A) + card(B) = 10.

Axioma 5.8. Azxzioma de Cardinalidad. Sean A y B conjuntos disjuntos entonces
card(AU B) = card(A) + card(B).

El axioma puede generalizarse a mas de dos conjuntos, es decir, si Ay, Ag,..., A, es una
familia de conjuntos disjuntos entre si, esto es, A;NA; = ¢ parai # jconi,j=1,2,...,n
entonces

card(Ay UAyUA3U...UA,) = card(Ar) + card(Asz) + card(As) + ...+ card(A,)

card (O Al) = Zn: card(A;)
i=1 i=1

Ejemplo 5.23. Por conjunto referencial se hace U = {2,3,...,9,10,11} cuyo cardinal es
card(U) = 10. Sea A = {n : n|18} que esta conformado por A ={2,3,6,9} con card(A) =
4, el complemento de dicho conjunto A respecto de U es de la forma A¢ = {4,5,7,8,10,11}
para lo que card(A°) = 6 donde se presenta la igualdad card(A) + card(A°) = card(U) o
su equivalente card(A°) = card(U) — card(A).Sea B = {4,5,6,7,8,9} C U cuyo cardinal
es card(B) = 6 en este caso AUB = {2,3,6,9,4,5,7,8} (card(AU B) =38), debido a que
la interseccion es el conjunto AN B = {6,9} (card(AN B) = 2) y por ende se presenta la
igualdad card(AU B) = 8 = card(A) + card(B) — card(AN B).



5.4

Cardinalidad

159

Teorema 5.14. Propiedades del Cardinal Sean A y B subconjuntos de U el cual es
finito entonces

1.

card(¢) =0

2. card(A°) = card(U) — card(A)

3. card(A — B) = card(A) — card(AN B) 4. card(AU B) = card(A) + card(B) — card(AN B)

Demostracion [Método Directo, Afirmacion-razon|

QU = W NN =

© 0 I O

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

SPUP=9

. ¢ v ¢ son disjuntos

.card(p U ¢) = card(¢p)

. card(¢p) + card(p) = card(p)
.card(¢p) =0

CAUA=U

. Ay A€ son disjuntos
.card(AU A°) = card(U)
.card(A) + card(A°) = card(U)
. card(A€) = card(U) — card(A)

(A-B)U(AnB)=A

A — By AN B son disjuntos
card((A— B)U (AN B)) = card(A)
card(A — B) + card(AN B) = card(A)
card(A — B) = card(A) — card(AN B)

AUB=(A-B)U(B—A)U(ANB)
A— B, B— Ay AN B son disjuntos

card(A — B) = card(A) — card(AN B)
card(B — A) = card(B) — card(AN B)

card(AN B)) + card(AN B)

23. card(AU B) = card(A) + card(B) — card(AN B)

card(AU B) = card((A— B)U(B—-A)U(ANB))
card(AUB) = card(A— B) +card(B — A) +card(ANB)

card(AU B) = (card(A) — card(AN B)) + (card(B) —

.. Idempotencia para la uniéon 5.7

.. Axioma del conjunto vacio

.. Axioma de igualdad 5.7 en 1

.. Axioma de cardinalidad 5.8 en 3 por 2

.. Propiedades de los reales en 4

.. Propiedades del complemento 5.10
.. Propiedades del complemento

.. Axioma de igualdad en 6

.. Axioma de cardinalidad en 8 por 7

.. Propiedades algebraicas en 4

.. Propiedades de conjuntos

.. Propiedades de la diferencia 5.12

.. Axioma de igualdad en 11

.. Axioma de cardinalidad en 13 por 12

.. Propiedades algebraicas en 14

.. Propiedades de conjuntos

.. Propiedades de la diferencia

.. Axioma de igualdad en 16

.. Axioma de cardinalidad en 18
.. Literal 3 aplicado a A — B

.. Literal 3 aplicado a B — A

.. Sustitucion de 20 y 21 en 19

.. Operaciones en los reales en 22

Corolario 5.1. Sean A, B y C subconjuntos de U el cual es finito, entonces

1. Si A C B entonces card(B — A) = card(B) — card(A)
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card(AAB) = card(A) + card(B) — 2card(AN B)
card(A°U B€) = card(U) — card(AN B)

A N

card(AU B UC) = card(A) + card(B) + card(C) — card(AN B) — card(AN C) —

(
(
card(AU B€) = card(U) + card(AN B) — card(B)
(
card(BNC)+ card(ANBNC)

Demostracion [Método Directo, Prosa|

Para el primer literal la hipotesis es que A C B, que por el teorema 5.5 AN B = A (1);
ya que card(A — B) = card(A) — card(A N B) entonces al sustituirse la igualdad (1) se
concluye que card(A — B) = card(A) — card(B).

En el teorema relativo a las propiedades de la diferencia simétrica se demostré que AAB =
(A—B)U(B—A), donde los conjuntos A— By B— A son disjuntos, de acuerdo con el axioma
de cardinalidad se sigue que card(AAB) = card(A — B) + card(B — A) (2). De acuerdo
con en el teorema 5.14 literal 3, las igualdades card(A — B) = card(A) — card(A N B)
y card(B — A) = card(B) — card(A N B) son ciertas, al sustituir en la igualdad (2) re-
sulta card(AAB) = (card(A) — card(A N B)) + (card(B) — card(B — A)) y asi concluir
card(AAB) = card(A) + card(B) — 2card(A N B).

Por medio de la propiedad de D’Morgan 5.11 se escribe A°UB® = (ANDB)¢ que por el axioma
de igualdad resulta card(A°U B¢) = card((AN B)°) y por el literal 2 del teorema 5.14 se lo-
gra la igualdad card(A°UB¢) = card(U)—card(ANB) que era el proposito del tercer literal.

Por la propiedad distributiva y el hecho que A N A¢ = ¢ se obtiene la igualdad A U B¢ =
AU (A°N B (3) donde A y A°N B¢ son conjuntos disjuntos, que por el axioma de
cardinalidad aplicado en (3) se escribe card(A U B¢) = card(A) + car(A° N B¢) (4). Por
la ley de D’Morgan es cierta la igualdad A° N B¢ = (A U B)¢ que por las propiedades
del cardinal resulta card(A° N B€) = card((A U B)¢) = card(U) — card(A U B) (3). Como
card(AUB) = card(A)+card(B)—card(ANB) entonces en la igualdad (4) y por propiedades
en los reales

card(A° N B°) = card(U) — (card(A) + card(B) — card(AN B))
= card(U) — card(A) — card(B) + card(AN B) (4)
Al sustituir la igualdad (4) en la igualdad (2) se tiene

card(AU B°) = card(A) + (card(U) — card(A) — card(B) + card(AN B))
= card(U) + card(AN B) — card(B)
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Y asi concluir la demostracion del literal 4. Para la demostracién del ultimo literal se tiene
que AUBUC = (AU B) U C esto por la propiedad asociativa, asi por la aplicacion del
literal 4 del teorema 5.14 resulta

card(AUBUC) = card((AUB)UC) = card(AU B) + card(C) — card((AU B)N C)
= card(A) + card(B) — card(AN B) + card(C) — card((AU B) N C) (5)

Es cierta la igualdad (AU B)NC = (ANC)U (BNC), esto por la propiedad distributiva,
haciendo uso de las propiedades del cardinal aplicada a la igualdad anterior y por el teorema
de idempotencia se logran las siguiente igualdades

card((AUB)NC) =card(ANC) + card(BNC) — card((ANC)N (BN C))
=card(ANC) +card(BNC) —card(ANBNC) (6)

Sustituyendo la igualdad (6) en (5) resulta la igualdad
card(AUBUC) = card(A)+card(B)+card(C)—card(ANB)—card(ANC)—card(BNC)+card(ANBNC)

Que era el propoésito de la prueba.

5.5. Situaciones Problema

Ejemplo 5.24. Suponiendo que 70% de la poblacion colombiana lee la revista Poder, el
50 % la revista Cambio y un 40 % leen ambas revistas. ;Qué porcentaje de la poblacion lee
sdlo la revista poder? ;qué porcentaje de la poblacion colombiana lee solo un tipo de revista?

Solucién

Sean Py C' el conjunto de las personas que leen la revista Poder y Cambio de forma respec-
tiva. La informacion relativa a los porcentajes representa el cardinal, ya que para el caso del
70 % se escribe como 0,7 en forma decimal y asi se escribe card(P) = 0,7, card(C) = 0,5,
mientras que el 40 % leen ambas revistas por lo que se habla de la interseccién entre los
conjuntos P y C, para lo que card(P N C) = 0,4, puesto que el 100 % es el mayor val-
or a considerar entonces éste corresponde al cardinal del conjunto universal card(U) = 1.
Bajo las circunstancias del planteamiento P — C' es el conjunto de personas que leen la
revista Poder pero no la revista Cambio, donde por el teorema 5.14 (literal 3) resulta que
card(P — C) = card(P) — card(PNC) = 0,7— 0,4 = 0,3, es decir, el 30% lee la revista
Poder solamente, por igual razonamiento se halla que card(C — P) = 0,1, es decir, el 10%
lee solo la revista Cambio y asi el 40 % = 30 % + 10 % lee solo un tipo de revista.
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Ejemplo 5.25. En una encuesta realizada en la universidad a 150 estudiantes acerca de
sus practicas deportivas, se encontraron los siquientes datos:

54 estudiantes practican baloncesto 10 estudiantes practican baloncesto solamente
89 estudiantes practican fitbol 20 estudiantes practican baloncesto y natacion
80 estudiantes practican natacion 15 estudiantes practican los tres deportes

60 estudiantes practican futbol y natacion

Calcule:

1. ;Cudntos estudiantes practican baloncesto y fitbol pero no natacion?
2. ;Cudntos practican un solo deporte?
3. ¢Cudntos practican a lo sumo dos deportes?

4. ¢Cudntos practican como minimo dos deportes?

Solucién

Sean B, F''y N los conjuntos que representan los estudiantes que practican baloncesto,
fatbol y natacion de forma respectiva, el cardinal del conjunto universal es de 150, se es-
cribe card(U) = 150, mientras que la interseccion de los tres conjuntos es de 15, es por ello
que card(B N F N N) =15, como 20 estudiantes practican baloncesto y natacion y ya 15
practican lo tres deportes entonces solo 5 practican baloncesto y nataciéon pero no fatbol, se
escribe como card(BNF¢NN) = 5. Continuando con un razonamiento similar se construye
el siguiente diagrama de Venn

Con base en esta representacion grafica se puede responder a cada una de las preguntas
planteadas. Para la primera el conjunto a considerar es B N F N N€¢, cuyo cardinal es de
card(BN F N N€¢) = 24, por lo que 24 estudiantes practican baloncesto y futbol pero no
natacion. Ahora bien, los que practican un solo deporte se representa en teérminos de las
operaciones de conjuntos como (BAF)AN, donde card((BAF)AN) = 30, es decir, 30 es-
tudiantes.

La expresion a lo sumo dos deporte indica aquellos estudiantes que practican dos deportes,
un deporte y los que no practican ninguna actividad deportiva, para los de dos deportes
se cuenta con 74, 30 de un deporte y 31 que no recurren a esto deportes es por ello que
135 estudiantes practican a lo sumo dos deportes. Mientras que la palabra como minimo
dos deportes es que practican dos o més deportes, en este caso dos o tres deportes, para
la primea situacioén 74 y para la segunda 15, es por ello que 89 estudiantes practican como
minimo dos deportes.
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Ejemplo 5.26. En un concurso de cocineros se prepararon tres comidas A, B y C y se
obtuvieron los siquientes resultados:

20% de los cocineros tuvo éxito en las tres comidas 29 % de los cocineros fracasd en la comida A
6% de los cocineros fracasé en las comidas A y B 32% de los cocineros fracasé en la comida B
5% de los cocineros fracaso en las comidas B y C 36 % de los cocineros fracasé en la comida C

8% de los cocineros fracasé en las comidas A y ¢

Responda:

1. ;Qué porcentaje de los cocineros fracasd en las tres comidas?
2. s Qué porcentaje fracasé en al menos una comida?
3. s Qué porcentaje fracasd en las comidas A y C pero no en la B?

4. ¢Qué porcentaje fracasd unicamente en las comidas A y B?

Solucién

Sean A, B y C los tres tipos de comidas planteadas en la situacion, donde los cardi-
nales se plantean como situaciones de fracaso, asi card(A) = 0,29, (29 %), otros cardi-
nales son card(B) = 0,32, card(C) = 0,36, card(A N B) = 0,06, card(B N C) = 0,05 y
card(ANC) = 0,08. La informacion que el 20 % obtuvo éxito en la tres comidas se modifica
diciendo que 80 % fracaso en alguna, lo cual se escribe como card(AU BUC) = 0,8. Ahora
procedamos a reemplazar toda la informacién en la igualdad dada en literal 5 del corolario
5.1 para tener 0,8 = 0,294 0,32+ 0,36 — 0,06 — 0,08 — 0,05 + card(AN BN C), Haciendo uso
de las propiedades en los reales se sigue que card(AN BN C) = 0,02, por lo que solo el 2%
de los cocineros fracaso en las tres comidas A, B y C. Con base en el nuevo dato obtenido
se hace el diagrama de Venn que sigue.

Aquellos que fracasaron en al menos una comida son los que fracasaron en 1, 2 y las tres
comidas, cuyo cardinal se presenta en forma respectiva como 17 % + 23% + 25% = 65 %,
4% +6%+3%=13%y 2%, de donde el 80 % fracaso en al menos una comida. El fracaso
en la comida A y C pero no B representa la interseccion A N C' N B¢ cuyo cardinal es
6 %. El porcentaje que fracaso en las comidas A y B es el conjunto AN B N C° donde
card(ANBNC°) =4%.

5.6. Conjunto de Partes

Ejemplo 5.27. Consideremos el conjunto A = {—1,0,1}. De este conjunto A se pueden
obtener subconjuntos a partir de la cantidad de elementos de A que se tomen; por ejemplo,
si se toma un solo elemento, se pueden formar los tres conjuntos unitarios Ay = {—1},
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Ay ={0} y A3 = {1}. Si se toman ahora dos elementos de A se forman los tres conjuntos
Ay ={-1,0}, A5 ={-1,1} y Ag = {0, 1} y si se toman tres elementos se forma el séptimo
subconjunto A7 = {—1,0,1} = A y el dltimo subconjunto que se obtiene de A es el vacio
Ag = ¢ (ver teorema 5.6). Por lo tanto para un conjunto con tres elementos se obtienen
ocho subconjuntos.

Definicion 5.8. Conjunto de Partes El conjunto de partes de A o conjunto potencia
de A es la coleccion de todos los subconjuntos X de A, se denota P(A) y esta dada por
P(A)={X:X C A}

Segtn la definicion 5.8 se escribe X € P(A) «» X C A. Para el conjunto A = {—1,0,1} en
el ejemplo 5.27 se sigue que el conjunto de partes estd dado por

P(A) = {{_1}7 {0}7 {1}7 {_170}7 {_17 1}7 {07 1}7 A7 ¢}

Notese que el conjunto A hace parte del conjunto de partes asi como el vacio, esto inde-
pendiente del conjunto A, ademés la unioén, interseccion, diferencia y diferencia simétrica
entre conjuntos del conjunto de partes es otro elemento del conjunto de partes, asi para
Ay = {—1,0} y Ag = {0, 1} se sigue que Ay U Ag = {—1,0, 1} =A A4yNAg = {O} = Ao,
Ay —Ag ={—-1} = A1 y AyAAs = {—1,1} = As. Esto se presenta en el siguiente teorema.

Teorema 5.15. Propiedades del Conjunto de Partes Sea A un conjunto entonces
1. ¢ € P(A)
2. AeP(A)
3. Sean X, Y elementos de P(A) entonces los conjuntos X UY, XNY, X —-Y y XAY

son elementos e P(A).

Demostracion [Método Directo, Afirmacion-razon|

1.L.ogCA ... Propiedades del conjunto vacio 5.6
2.0 €P(A) ... Definicion del conjunto de partes 5.8 en 1
3.ACA ... Propiedad reflexiva de la inclusion 5.5

4. AeP(A) ... Definicion del conjunto de partes 5.8 en 3
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5. X € P(A) ... Hipotesis

6.Y € P(A) ... Hipotesis

7.XCA ... Definicion del conjunto de partes en 5

8.YCA ... Definicion del conjunto de partes en 6

9. XUY CA ... Propiedades de la unién (literal 8 en 5.7) entre 7 y 8
10. X UY € P(A) ... Definicion del conjunto de partes en 9

1. XNY CA ... Propiedades de la interseccion (literal 8 en 5.8) entre 7y 8
12.XNY e P(A4) ... Definicion del conjunto de partes en 11
13.X-YCX ... Propiedades de la diferencia (5.12)

14 X-YCA ... Transitividad de la inclusiéon entre 13 y 7

15. (X -Y)eP(A) ... Definicion del conjunto de partes en 14

16 Y -XCY ... Propiedades de la diferencia (5.12)

17 Y -XCA ... Transitividad de la inclusion entre 16 y 8

18. (Y —X) e P(A) ... Definicion del conjunto de partes en 17

19. (X -Y)U(Y —X) € P(A) ...Unién entre 15 y 18 por ser elemento de P(A)

20. XAY € P(A) ... Propiedades de la diferencia simétrica en 19

Ejemplo 5.28. Para los conjuntos A = {1,2} y B = {2,3}, los conjuntos de partes son
P(A) = {{1},{2}, A, ¢} vy P(B) = {{2},{3}, B, ¢} respectivamente, intersectando dichos
conjuntos de partes resulta P(A) N P(B) = {{2}, ¢}, puesto que AN B = {2} entonces
P(ANn B) = {{2},¢} = {AN B,¢}, y por tanto se presenta la igualdad P(AN B) =
P(A)NP(B). Por otro lado

P(A)UP(B) = {{1},{2},{3}, A, B, ¢} = {{1}, {2}, {3}, {1,2}.{2,3}, ¢}

Ya que la union entre los conjuntos A y B es AU B = {1,2,3} entonces el conjunto de
partes de la unidn es

P(AUB) = {{1},{2}, {3}, {1, 2},{2,3},{1,2},{1,2,3}¢}

En este caso se presenta la inclusion conjuntista P(A) UP(B) C P(AU B).

Teorema 5.16. Sean A y B conjuntos entonces

1. P(ANB) = P(A) N P(B)
2. P(A)UP(B) C P(AUB)

Demostracion [Método Directo, Prosa|



166 Teoria de Conjuntos

Para demostrar la igualdad P(A N B) = P(A) N P(B) se deben verificar las inclusiones
P(ANB) C P(A)NP(B)y P(A)NP(B) C P(AN B). Para la primera inclusiéon supon-
gamos que X € P(ANDB), donde X es un subconjunto de ANB por la definicion del conjunto
de partes, esto es X C AN B, por las propiedades de la interseccién entre conjuntos se sigue
que X C Ay X C B,porloque X € P(A)y X € P(B), asi X esta en la interseccion entre
los conjuntos de partes, es decir, X € [P(A) N P(B)] y por el método directo se concluye
que P(ANB) Cc P(A)NP(B) (1). Supongamos ahora que X € [P(A) NP(B)] de donde
X € P(A) y X € P(B), que por la definicién del conjunto de partes X € Ay X C B,
por la propiedad 8 del teorema 5.8 se sigue que X € AN B, es decir X € P(ANB) y
asi P(A) NP(B) C P(AN B) (2). Entre las inclusiones (1) y (2) se concluye la igualdad
P(ANB)=P(A)NP(B). g

Ejemplo 5.29. Para el conjunto A = {1} (card(A)=1) el conjunto de partes estd dado
por P(A) = {{1},¢} cuyo cardinal es card(P(A)) = 2 = 2'. Si se tiene un conjun-
to con cardinal 2 como B = {1,2} entonces el conjunto de partes estd conformado por
P(B) = {{1},{2}, B, ¢} donde card(P(B)) = 4 = 22, es decir, los cardinales del conjunto
de partes estd en progresion geométrica, es decir, en potencias de 2 para este caso, asi si A
es un conjunto cuyo cardinal es n (card(A) = n) entonces card(P(A)) = 2.

Axioma 5.9. Axioma del cardinal del conjunto de Partes. Sea A un subconjunto de
U. Si card(A) = n entonces card(P(A)) = 2" = 20ard(4)

Teorema 5.17. Propiedad del cardinal del conjunto de partes Sean A y B subcon-
juntos de U el cual es finito entonces

1. Si A y B son conjuntos disjuntos entonces card(P(AUB)) = card(P(A))-card(P(B))

ey) _ card(P(U))
2. card(P(A%)) = Zrampay

3. Si A C B entonces card(P(B — A)) = %

4. card(P(AAB)) = Cmﬂ(ig%?%)(fr:cfgﬁ)(f))

Demostracion [Método Directo, Afirmacion-razon|

. Ay B son disjuntos ... Hipotesis

. card(AU B) = card(A) + card(B) ... Teorema 5.14 en 1

. card(P(AU B)) = 2¢card(AUB) ... Axioma del cardinal del conjunto de partes
( ) ... Sustitucion de 2 en 3

P(AU B)) = 2¢card(4) . gcard(B) ... Propiedades de potenciacion en 4

( )) = card(P(A)) - card(P(B)) ...Axioma 5.9 en 5
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7. card(A°) = card(U) — card(A) ... Propiedades del cardinal 5.14

8. card(P(A°)) = 200rd(A%) ... Axioma del cardinal del conjunto de partes
9. card(P(A°)) = 2card(U)—card(4) ... Sustitucion de 8 en 9

10. card(P(A°)) = gjj:djﬁg‘i ... Propiedades de potenciacion en 9

11. card(P(A°)) = %P(B%% .. Axioma 5.9 en 10

12. ACB ... Hipotesis

13. card(B — A) = card(B) — card(A) ... Corolario 5.1 en 12

14. card(P(B — A)) = 2card(B=4) ... Axioma del cardinal del conjunto de partes
15. card(P(B — A)) = 2¢0rd(B)—card(4) ... Sustituciéon de 13 en 14

16. card(P(B — A)) = EEZ:ZEZ ... Propiedades de potenciacion en 15

17. card(P(B — A)) = % .. Axioma 5.9 en 16

18. card(AAB) = card(A) + card(B) — 2card(AN B) ...Corolario 5.1
19. card(P(AAB)) = 2card(AAB) ... Axioma 5.9
20. card(P(AAB)) = 2¢0rd(A)+card(B)—2card(ANEB) ... Sustitucion de 18 en 19
21. card(P(AAB geard(A).pcard(B)
22. card(P(AAB
(P(

)
)
)) gcard(A) gcard(B)
23. card(P(AAB))

card(P(A))-card(P(A))

[card(’P(AﬂB))]? .. AXioma 5.9 en 22

5.7. Familias Finitas de Conjuntos

Definicion 5.9. Familia de Conjuntos Una familia de conjuntos es un conjunto cuyos
elementos, son a su vez, conjuntos.

Ejemplo 5.30. Sea F = {{0},{1},{2}} entonces F es una familia de conjuntos cuyos ele-
mentos son los conjuntos {0}, {1} y {2}. El conjunto de partes es una familia de conjuntos,
por ejemplo para A = {3,4} entonces P(A) = {{3},{4}, A, ¢}. Una familia de intervalos
cerrados se presenta como G = {[x — 2,z] : * € R} elementos de este conjunto son los

intervalos [0,2], -3, 1].

Sea n un ndimero natural el cual induce el conjunto Z,, = {1,2,3,...,n — 1,n}, asi Iy =
{1,2,3,4,5}, es decir, los primeros cinco naturales, es por ello que Z,, representa el conjun-
to de los primeros n naturales. Con base en este conjunto Z,, las familias de conjuntos se
escriben como F = {Ay, Ag,..., Ay} = {A; : i € T} en este caso se dice que F es una
familia de conjuntos indexado por Z,.

reard(AnE) ... Propiedades de potenciaciéon en 20

= S eard(AnEz ... Propiedades de potenciaciéon en 21
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Definiciéon 5.10. Unién Generalizada Sea F = {A; : i € I,,} una familia finita y no
1

vacia de conjuntos. En el caso en que n =1 entonces |J A; = A1 y
i=1

- G1)os

i=1

Esto para n > 2.

Una forma alternativa de escribir la definicién de la unién generalizada mediante los ele-
mentos se presenta como

CJAi ={z:(3Fi)(x € A)Niel,}
=1

Es decir, para que el elemento x pertenezca a la uniéon generalizada es necesario que exista
un conjunto A; de la familia F tal que z € A;, ndtese que es necesario la existencia del
conjunto (por lo menos 1) A; que contenga a x pero no es necesaria que todos los conjuntos
Ay, As, ..., A, de la familia lo contengan, sin embargo esto se puede presentar.

Ejemplo 5.31. Considere los conjuntos Ay = {—1,0,1}, Ao = {0,2,4,6} y A3 = {1,2,3,4,5};
los cuales generan la familia F = {A;, Aa, Az}. Para la union generalizada se procede de

1
forma inductiva |J A; = A1 = {—1,0,1} esto para cuando n = 1, si hacemos que n = 2

i=1
entonces se €SCTib€

2 2-1
J4 = (U AZ-> JA42=A4104; ={-1,0,1,2,4,6}
i=1 i=1
Mientras que si se hace n = 3 resulta
3 3—1
Jai = (U Ai> JA4s = (A104) Uds ={-1,0,1,2,4,6,3,5}
i=1 i=1

En cada uno de los casos en que se unieron los conjuntos A1, A1 U As y A1 U As U Ag se
obtuvieron de nuevo conjuntos es por ello que se presenta el axioma siguiente.

Axioma 5.10. Generalizacion para la Union Si F es una familia de conjuntos en-
tonces la union generalizada es un conjunto.



5.7 Familias Finitas de Conjuntos 169

Definicion 5.11. Interseccion Generalizada Sea F = {A; : i € I,,} una familia finita
1

y no vacia de conjuntos. Para n =1 se escribe (| A; = A1 y
i=1

n

(2

A= (nﬂl Ai> An

1 i=1

FEsto para n > 2.

Con base en los elementos, la interseccion generalizada se caracteriza como
n
(Ai = {z: (Vi)(x € A4) Ni €T}
i=1

Es decir, x debe ser un elemento en cada uno de los conjuntos que conforman la familia
n

A;. Si algunos de los conjuntos A, y A, para m, z € Z,, son disjuntos entonces (| 4; = ¢
i=1

de forma global, ya que si m < z y los conjuntos Aq, A, ..., A, no son disjuntos entonces

m

J A; # ¢. Al igual que en el caso de la union, la interseccion generalizada es un conjunto.

=1

Ejemplo 5.32. Para los conjuntos A1, As y Az del ejemplo 5.31 cuya familia estd dada por
1

F = {A1, Ag, A3} se presentan las intersecciones generalizadas (| A; = Ay = {—1,0,1},
i=1

2 3
A = A1 nNAy = {-1,0,1} n{0,2,4,6} = {0} y [ A = (A1 N A2) N A3 = {0} N
i=1 =1

{1,2,3,4,5} = ¢.

Axioma 5.11. Generalizacion para la Interseccion Si F es una familia de conjuntos
entonces la interseccion generalizada es un conjunto.

En este caso el conjunto universal U actia de forma tal que si F = {A4; : i € Z,,} es una
familia de conjuntos en U entonces A; C Uesto para todoi=1,2,3,...,n. Las propiedades
relativas a familias de conjuntos son generalizaciones de las propiedades ya demostradas
para las operaciones entre conjuntos, es por ello que las demostraciones de estas general-
izaciones se deben hacer por medio del principio de induccién matemética.

Teorema 5.18. Leyes de D’Morgan Generalizadas Sea F una familia de conjuntos y
U el conjunto referencial entonces

1 (Gl AZ)C — ) A



170 Teoria de Conjuntos

2 (Na) =04
i=1 i=1

Demostracion |Principio de Inducciéon, Afirmacion-razon|

Para n = 2 la expresion ha demostrada se escribe como (A1 U Az)¢ = A N A, expresion
que es cierta con base en la ley de D’Morgan demostrada en 5.11. Se asume ahora que la
propiedad es cierta para (kK — 1) € N, lo cual se escribe como

k—1 ¢ k-1
(U Ai> = ﬂ A Hipotesis Inductiva
i=1 i=1
Se demuestra a continuacion la veracidad para k& € N, donde

k ¢ k
(U Ai> = U AS Tesis Inductiva
i=1 i=1

k ¢ k-1 ¢
1. (U Ai> = (( U AZ)> U Ak> ... Definicion de union generalizada 5.10
L ~ k-1
2. (U Ai> = (BUAy)® ... Cambio de variable 5.10 en 1; B = |J A4;
i=1 i=1
k (&
3. (U Ai) = B°NAj, ... Ley de D’Morgan 5.11 en 2
=1
& ¢ k—1 ¢
4. (U A,> = < Ai> N Aj, ... Sustitucién de C en 3
RO
5. <U Ai> = < Af) N Ag ... Hipotesis inductiva en 4
=1, N\l
6. (U Ai> = [ 4¢ .. Interseccion generalizada 5.11 en 5
i=1 .=l
n n
7. (U Ai> = A .. Principio de induccién en 6
i=1 i=1

Teorema 5.19. Distributiva Generalizada Sea F = {A; : i € I,} una familia de
conguntos y Bun conjunto cualquiera entonces

n

1. BN (91 Ai> = iL:Jl(B NA;)

i=1

2. BU (Z-ﬁlAi> — N(BUA)
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Demostracion |Principio de Induccion, Afirmacion-razon|

Se verifica que la propiedad se cumple para los dos primeros elementos de la familia F, la
cual se escribe como BN (41 U Ag) = (BN Ap) U (BN Asg), igualdad que es cierta por la
propiedad distributiva 5.9 Supongamos que la propiedad se satisface para (k — 1) € N, es
decir,

k—1
BN (U A; > J(BNnA4i)  Hipotesis Inductiva
i=1
Ahora demostremos la veracidad para k € N, es decir,

k k
Bn (U ) U BnN4;) Tesis Inductiva
i=1

k—1
1. BN A;) =Bn << U Ai> U Ak> ... Definicién de uniéon generalizada 5.10
7 i=1
k—1
2. Bn A ) =BnN(CUAy) ... Cambio de variable 5.10 en 1; C' = |J 4;
i 1=1

w
S
D

=(BNC)U (BN Ag) ... Propiedad distributiva 5.9 en 2

S,

.. Sustitucion de C en 3

ot
Sy
D

k—1
A = < UBn Az)> U(BNAg) ...Hipétesis inductiva en 4

S,

=
S/
D

k
Al = U (BN A;) ... Unién generalizada en 5

S,

~
Sy
D

i
™
)
Ic:lc-lC-IC~-IC-IC-[C~
o
Il
7N
&
D)
E
crl
S
N———
N—
-
™
D)
N
z

n
A ) =UBnNA) ... Principio de induccién en 6

S,

Teorema 5.20. Generalizacion propiedades del conjunto de partes La familia de
conjuntos F = {A; :i € I,,} finita satisface las propiedades

P (ﬂ Ai) = N P(A)
i=1 i=1
2. UPA)CP (U Ai>
i i=1
Demostracion [Principio de Inducciéon, Afirmacion-razon|

En el momento de verificar para n = 2 (dos primeros elementos de la familia) la propiedad
enunciada se escribe como P(A; N Ag) = P(A1) NP(Az), la cual se demostrd su veracidad
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en el teorema 5.16 es por ello que la propiedad se verifica para n = 2. Supongamos que la
propiedad se cumple para (k — 1) € N, es decir,

k—1 k—1
P (ﬂ Ai> = ﬂ P(A;) Hipotesis Inductiva
i=1 i=1
Y veamos que se satisface para el siguiente natural & € N, lo que se escribe como

k k
P (ﬂ Ai> = m P(A;) Tesis Inductiva
i=1 i=1

1. P (fkﬁl Ai> =P <<kﬁ11 Ai> N Ak> ... Definiciéon de interseccion generalizada 5.11
2.P (fkﬁl Ai> =P (B Ak) ... Cambio de variable 5.11 en 1 B = kﬂll A;
3.P (fk]l AZ-> =P(B)P(Ax) ... Teorema 5.16 en 2

4. P ((k]l Ai> =P (kﬁll AZ-) NP(Ax) ... Sustitucion de B en 3

5. P (fk]l Ai> = <k_11 P(Ai)> NP(Ar) .. Hipotesis inductiva en 4

6. P (fkﬁl Ai> = 'fk]l P(A;) ... Interseccion generalizada en 5

7.P (%1 AZ-> = 'FL]I P(A;) ... Principio de induccion en 6

5.8. Intervalos en los reales

Los intervalos en los reales son conjuntos que satisfacen una condicion especifica, por ejemplo
(a,b], con a,b reales se llama intervalo semi-abierto o semi-cerrado y esta conformado por
todos los & € R tales que a < & < b, se representa en forma de conjuntos como

(a,b] ={z:a <z <b}
Por ejemplo en el caso en que a = —2 y b = 1 entonces (—2, 1] representa todos los reales

que estan comprendidos entre —2 y 1 sin embargo —2 ¢ (—2,1] y 1 € (=2, 1], otros elemen-
tos de este conjunto son 0, %, %, _T5 entre otros.

Los intervalos se categorizan en acotados y no acotados como se presentan a continuacion,
donde el intervalo semi-abierto expuesto con anterioridad es un intervalo acotado

1. Intervalos acotados
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a) (a,b) ={z € R:a <z < b} Intervalo abierto
a,bl = {zr € R:a < x <b} Intervalo Cerrado

o S
~— ~—

a,b) = {x € R:a <z < b} Intervalo Semi-abierto o semi-cerrado

2. Intervalos no-acotados

a) (—oo,a)={r eR:x<a}
b) (—oo0,al={r eR:x<a}
¢) (b,+o00)={x €R:z>b}
d) [b,+0)={x€eR:z>0b}

Ejemplo 5.33. Consideremos los intervalos A = (—=2,3] y B = [1,5), ambos son acota-
dos y ademds la interseccion la componen todos aquellos reales entre 1 y 3 incluyéndolos,
es decir, AN B = [1,3] (un intervalo cerrado), la union entre estos mismo conjuntos es
AU B = (-2,5]. La diferencia entre ambos conjuntos es A — B = (—2,1), ndtese que el 1
no estd contenido debido a que pertenece a la interseccion; como B — A = (3,5] entonces
la diferencia simétrica estd dada por AAB = (—2,1) U (3,5]. Puesto que el conjunto ref-
erencial son los reales U = R entonces el complemento de ambos conjuntos estd dada por
A = (—00,—2]U(3,400) y B¢ = (—00,1) U [5, +00).

En la seccion anterior se definicién la unién generalizada para una familia de conjuntos
finito, con F = {A1, A, ..., A} en los siguientes ejemplos se hace uso de familias infinitas,
para ello no se presentan demostraciones sino que esté en juego la intuciéon y el manejo
adecuado de las propiedades de los reales y su representaciéon en la recta numérica. En
dicho caso se hacen las consideraciones

JAai=Aauauau... vy [(NA=4nAn43n...
=1 =1

Es decir, donde se unen e intersectan infinitos elementos de la familia de conjuntos infinito
Foo = {A1, A9, As,...} ={A4; : i € N} donde el conjunto indexante ya no es Z,, (finito) sino
los naturales (infinito).

Ejemplo 5.34. Consideremos los intervalos semi-abiertos A, = [n,+00) esto para n € N,
el cual genera la familia F. En este caso Ay = [1,4+00), Ay = [2,4+00), A3 = [3,+00),
etcétera, al hacer una representacion grdafica en una recta numérica se presentan las inclu-
stones

Al DA D A3 DAL D ...

Los cuales reciben el nombre de intervalos encajados. Con base en la forma en que se

o0
da la inclusion se sigue que |J A; = Ay = [1,400). Por otro lado la interseccion entre
i=1
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oo

todos los conjuntos A, es el conjunto vacio, se escribe (| A; = ¢, en efecto, si se supone
i=1

por ejemplo que la interseccion es el real 120,33 entonces dicho nimero no pertenece al in-

tervalo A1g1 = [121, +00) y asi para cualquier real x existe n € N tal que x ¢ A,, = [n, +00).

C

El complemento de los intervalos Ay, Ay, Az son Af = (—o0,1), A5 = (—00,2), A§ =
(—00,3), en esta situacion los encajamientos de los intervalos se dan en el sentido contrario

A CAS CASCAjC...

oo
Por lo que (| A = A{ que es el menor conjunto que estd contenido en cada uno de
i=1

[o.¢]
ellos. Por el contrario |J AS = R, ya que para cualquier nimero real digamos 42456,1,
i=1
existe un conjunto Agoqs7 = (—00,42457) tal que 42456,1 € Ayo457. Con base en las cuatro
generalizaciones halladas se presentan las igualdades

(UAZ) = A7 =45 (ﬂAl) =¢*=R=]J 4
i=1 i=1 i=1 =1

Las cuales representan las generalizaciones de las leyes de D’Morgan para familias de con-
Juntos infinitas. (ver 5.18).

Ejemplo 5.35. Para cada n € N se definen los intervalos abiertos By, = (— 2 2), al darle

n’n

valores a n se tienen intervalos de la forma By = (—2,2), Bo = (—1,1), B3 = (—%, %), las
inclusiones se presentan como By D By D Bs D ..., notese que a medida que n se hace cada

. .. 9 . ~ L. . .
vez mds grande, la fraccion = se hace mds pequena, es por ello que el wnico término que

o0
estd en la interseccion de estos conjuntos es el cero, se escribe (| B; = {0}, mientras que la
i=1

oo
union es el conjunto mayor, por lo que | J B; = By. De forma general los complementos se
=1

escribe como Bf, = (oo, %] U [%, —|—oo), donde se encajan de la forma B C BS D B§ C ...,
oo

para lo que la interseccion es el mds pequeno de todos y se escribe (| Bf = BY, mientras
i=1

que la union de los complementos es cualquier real exceptuando el cero que estd en la inter-
o
seccion de los By, se escribe | ) Bf = R—{0} = (—00,0) U (0, +00) nuevamente se satisface

1=
la propiedad de D’Morgan generalizada.

Ejemplo 5.36. Los intervalos encajados C,, = (—%,1 + %) para cada n € N son de la
forma C1 = (=1,2), Cy = (—%, %), C3 = (—%,%), como C1 D Cy D (3 D ... entonces la
union es el mayor de ellos por lo que 6 C; = C1 = (—1,2); para la interseccion se sigue
que el cero, el uno y todos los nuﬁmero;:clomprendidos entre estos hacen parte de cada C,,,

o0
es por esto que () C; = [0, 1] incluyéndolos.
i=1
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5.9. Ejercicios

1. Hacer el siguiente pareamiento

a. Conjuntos disjuntos

b. La unién de los complementos

c. La interseccidon de la unién entre conjuntos

d. El complemento de la diferencia

e. Las partes de la interseccion

f. El complemento de la unién entre conjuntos

g. La diferencia entre los complementos

h. La unién de la interseccién entre conjuntos

i. La interseccién de las partes

__ A°— B¢

__ P(A)NP(B)
__ (A-B)°
__An(BUC)
__ANB=9¢
__ A°UB°

__ (AuB)°

—— P(ANnB)
__AU(BnNnC)

2. Sean A = {¢,{2},2,3,{¢}} v B = {2,3,4,5} conjuntos. Determinar el valor de
verdad de las siguientes proposiciones justificando las respuestas

a) (¢} € A

d) ¢ € B

g)2e€ A

i) {2,3} € P(B)

m) ¢ C B

o) {¢} € P(B)

s) ¢ € [P(A) —P(B)]

b) {2} C B
e){2}C 4
h){2,3}C A
k){2,{2}} Cc A
n)¢C A

p) {2,{2}} € P(4)
t) {¢} € P(B)

o) {211 A
f) card(A) =5

i) card(P(B)) =8

) ({2} € P(ANB)

n) card(P(AU B)) = 128
r) card(P(ANB)) =4
w) {6} € P(P(B)

3. Sean A = {¢,{2},3,{¢}} v B = {2,3} conjuntos. Halle P(A) y P(B) y coloque los
signos de C, Z, €, ¢, = 0 # segln sea el caso

a){p} A
d)é_ B

g)2 A
i){2,3} — P(B)
m)o B

4. Sea A={z/x€Z A

a) ANB
d) P(A)

b){2} B
e){2} A
h){2,3) A
W32 A
n)y A

b) A-B
e) P(A) — P(B)

o) {{2}} A

f) card(A) 5

i) card(P(B)) 4
{{2}} — P(ANB)

n) card(P(AUB)) 128

2?22 -3=0}yB={r/reN A 1<z<T7} Halle
por medio de extension los conjuntos A y B y determine

c) AUB
f) card(AAB)



176 Teoria de Conjuntos

5. Represente por extension el conjunto A cuyos elementos son aquellos nimeros de dos
cifras que se pueden construir empleando los digitos 2, 3, 4 0 5. ;Cuél es el cardinal
del conjunto A?.

6. Represente por compresion el conjunto B cuyos elementos estan constituidos por
aquellos ntimeros de dos cifras tales que la unidad es mayor que las decenas. ;| Cuél es
el cardinal de B? Si U es el conjunto de todos los ntmeros de dos cifras, escribir B¢
por compresion.

7. Determine los elementos de los conjuntos A y B sabiendo que AAB = {1,2,3,4,5},
BC={1,4,7}, A°={2,3,5,7} y U = {1,2,3,4,5,6,7,8}.

8. Determine los elementos de U y de sus subconjuntos A, B y C sabiendo que (A U
BucC) =18,12, BNC = ¢, ANC = {5}, AUB = {2,3,4,5,7,9}, AUC =
{2,3,5,6,10,11} y B¢ ={1,2,5,6,8,10,11,12}.

9. Elabore un diagrama de Venn para representar por medio de areas sombreadas los
siguientes conjuntos

a) (AUB) — C b) B — A ¢) ((A-B)nC)uce
d) (A-B)U(C—B) e)(AAB)AC £) (AUBUCQ)E

g) (AAB) - C L) (A° A B¢) A C° i) (A° — B°) — C°

i) (ANC)—(BUA) k) AUBcUCe 1) [(ANB) A (BNC)] A (ANC)

10. ParaU ={0,1,2,3,...,27,28,29} se consideran los subconjuntos B = {1,2,3,4,6,9,15}
y C =1{2,3,6,15,22,29}. Halle los cardinales card(BUC), card(BNC), card(B —C)
y card(BAC) de dos formas, la primera determinando los conjuntos y la segunda con
los teoremas 5.14 y 5.1.

11. Sean Ay B subconjuntos de U tales que card(U) = 200, card(A) = 100, card(B) = 80
y card(A N B) = 40. Halle los siguientes cardinales

a) card(AAB) b) card(A) ¢) card(A°N B)
d) card(A N B°) e) card(A — B) f) card(AU B)
g) card(P(AAB)) h) card(P(A°)) i) card(P(A — B))

12. De acuerdo con el concepto del conjunto de partes halle el conjunto que se requiere
en cada caso
a) Si A={-2,0,2} determine P(A)
b) Si A= {1} determine P(P(A))
¢) Si A = ¢ determine P(P(P(A)))
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13.

14.

15.

16.

17.

18.

d) Si Z(A) ={¢, A, {1}, {0}, {1} }. {1, {1}}, {1, ¢}, {{1}, ¢} } determine el conjun-
to

Sean A y B conjuntos arbitrarios en U, los conjuntos A— B, ANB, B— Ay A°N B¢
son disjuntos. De acuerdo con esto escriba los siguientes conjuntos como la unién de
estos conjuntos disjuntos

a)A b)AUB c)BC
d) AU B® e) (AN B)°© f)AAB

Para tres conjuntos A, By C en U, es posible encontrar ocho conjuntos disjuntos cuya
union es el conjunto U. ;Cuéles son estos ocho conjuntos? Con base en esto escriba
los siguiente conjuntos como la unién de algunos de estos

a) A b) (AUC)© c) (AAB)AC
d) BN (AUC) e) AN(BUC) f)(AuB)-C
Tomemos a U = {-10,-9,...,9,10} como el conjunto universal y los conjuntos

A={neN/0<n? <26}, B={rcR/x*—1023+2322 - 142 = 0}, C = {x+2/x =
-3,-2,—1} y D = {m € Z"/m|10} en U. Representar los cuatro conjuntos en un
diagrama de Carroll y dar solucién a las siguientes operaciones

a) A— (B—D) b) (AAB)-C

c) (AN B°)N(C°nD°) d)(BAC)U(AAD)

Considere el conjunto universal U = R. Halle el complemento del conjunto A en cada
uno de los siguientes casos

a) A= (-4,2]N(1,3] b) A= (-00,2) ART

c) A=N°NR~ d) A=ZUN

Sean C7 = {1,{1}}, Co = {1,2,{2}}, C3 = {1,2,3,{3}}, Cy = {1,2,3,4,{4}}, C5 =
{1,2,3,4,5,{6}} vy D ={1,2,3,{1},{2}}. Encontrar los conjuntos

a) 'Ql Cz b) él(D — Cz)

e von(Uc)

oo [e.9] o0 o0

Halle |J By, () Bn, U BSy () B¢ para cada uno de los siguientes intervalos en-
n=1 n=1 n=1 n=

cajados By, (Graficar los intervalos)
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a) By, = (_%7%) b) B, = (0, %]
¢) By = (—00, —n] d) B, = (-2,2+1)

19. Indique cuales de las siguientes implicaciones son verdaderas, justificando la respuesta

)
b)

c)

Ae BANBeC—-AecC
Ae BANBCc(C—AecC
Ae BANBcCc(C—AcC

20. En cada uno de los siguientes numerales, exprese en términos de conjuntos y las
operaciones requeridas, la region sombreada.

21. Resolver cada uno de los siguientes problemas indicando la via de solucién y repre-
sentandola en un diagrama de Venn

a)

Los siguientes son los datos que muestran las preferencias de algunos aspirantes
a ingresar a la universidad por ciertos programas: 50 prefieren medicina, 47
prefieren ingenieria, 35 prefieren biologia, 16 prefieren ingenieria y biologia, 11
prefieren medicina e ingenieria, 15 prefieren medicina y biologia y 9 prefieren las
tres. Determine:

i) ;Cuantos aspirantes fueron encuestados?

ii) ;Cuéantos aspirantes prefieren inicamente medicina?

;, Cuantos aspirantes prefieren medicina o biologfa pero no ingenieria?

)
iii) ;Cuantos aspirantes no prefieren biologia?
iv)

)

v) ;Cuantos aspirantes prefieren medicina o ingenieria?

A una conferencia internacional sobre contaminacion del medio ambiente, asisten
cien especialistas, de los cuales cincuenta hablan inglés, sesenta portugués y
cincuenta espanol; de ellos treinta hablan portugués e inglés; veinte inglés y
espanol; veinte portugués y espaiiol. ; Cuantos asistentes hablan los tres idiomas?

Una encuesta realizada a un grupo de profesores donde todos respondieron, reveld
que 450 tienen casa propia; 260 tienen automovil; 360 tienen computador; 200
tienen casa y automoévil; 250 tienen casa y computador; 150 tienen automoévil y
computador y 100 tienen casa, automévil y computador. Calcule:

i) ;Cuantos fueron los profesores encuestados?

ii) ;Cuéantas personas tienen solamente casa propia?
iv) jCuantas personas tienen casa y automovil, pero no tienen computador?

iii) ;Cuéantas personas tienen solamente automovil?
v)

;Cuantas personas tienen casa y computador pero no automovil?
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d) Una ensambladora de autos recibié una orden de fabricacion de 38 automoviles
tipo sedan, con las siguientes caracteristicas: 18 con aire acondicionado; 23 con
vidrios eléctricos y 29 con cojineria de lujo. De estos, 3 deben tener solamente
vidrios eléctricos, 8 deben tener solamente cojineria de lujo; 9 de los vehiculos
deben tener solamente vidrios eléctricos y cojineria de lujo, 5 de los vehiculos
deben tener los tres aditamentos. Determine:

i) ;Cuéntos vehiculos llevan aire acondicionado y cojineria de lujo, solamente?
ii) ;Cuantos vehiculos llevan como maximo dos de las caracteristicas?

iii) ;Cuantos vehiculos llevan aire acondicionado solamente?

22. Buscar conjuntos A, B y C para mostrar, por medio de un contraejemplo, que las
siguientes proposiciones no son teoremas

a) Si AC By C C B entonces A C C b) Si A C BUC entonces A C B

c) P(AUB) CP(A)UP(B) d) card(A — B) = card(A) — card(B)
e) card(AﬂBﬁC) = card(A)+card(B)+card(C) f)A—(B—-C)=(A—-B)—-C

g) P(A— B) C (P(4) - P(B)) h) (A-B)UA=AUB

i) Si (AﬂB) C Centonces ACCoBCC j) AC Bsiysolosi ANB = ¢

k) Si (A— B) C C entonces A C C 1) P(AA B)="P(A) A P(B)

m) Si AN B = ANC entonces B =C n) Si A— B = ¢ entonces A = B

0) Si AN B = ¢ entonces A =¢V B =¢ p) Si BUC C AUC entonces BC A

23. Haciendo uso del sistema formal deducir cada una de los siguientes teoremas

1) A— By AN B son disjuntos 2) ¢ #{o}

3) (A—B)N (B - A) = ¢ H(A-B)CA
5)81ACBﬂCentoncesACByACC 6)81A7$<Z>entoncesA (ANB)U(ANB°)
7VA-—B=A—-(ANB) 8)( )—C:A—(BUC)

9) (AuB)-C=(A-C)Uu(B-C) )(AOB)—C’ (A-C)n(B-0C)
11)A (B-C)=(A-B)U(A-C°) 12)A—-(BNC)=(A-B)U((4-0C)

13) Si A C B entonces B— (B—A) = A 14) A-(BUC)=(A-B)Nn(A-0C)
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15)(A-C)—(B-C)=(A-B)-C 16) Si A C B entonces P(A) C P(B)
17)Aﬂ(AUB):A(Absorci()n) 18) AnNB=A—-(A—-B)

19) AU (AN B) = A (Absorcion) 20) (ANnC)—(BNnC)=(A-B)NnC
21) Si A C ¢ entonces A = ¢ 22) (AAB)*=AAB*

23) A-B=¢siysolosi ACB 24) AAB=A°A B°
25)(A-B)-CCA—-(B-C) 26) A— B = B®— A°

21) (A-B)N(C—-D)=(ANC)—(BUD) 28) P(A—B) C (P(A) —P(B))U{¢}
20) (AAB)NC=(ANC)A(BNnCQC) 30) Si A C B entonces C —BCC— A
31) Si B C A entonces AUB = A 32) B—A=(AUuB)—-A

33) AUB=¢siiA=¢y B=¢ 34) Si A C B entonces AUC C BUC
35) Si A C B entonces ANC C BNC 36) card(A¢ — B€) = card(B) — card(AN B)
37) SSAC B CC entonces AUB=BnNC

)

38) A-(BAC)=[A—-(B-C)|n[A—(C — B)]

39) SACB, BCCyCC Aentonces A=B=C

40) (ANnB)U(CND)=[(AuC)N(BUC)|N[(AuD)n(BUD)|

41) SAUBC AUCy ANBC ANC entonces BC C

42) Sean A, By C conjuntos para los cuales B C A. Demuestre que B C C'si y s6lo
siA-CCA-B.

43) A C Bsii (BNC)UA = BN(CUA). Donde A, By C son conjuntos cualesquiera.

24. Por medio del principio de induccién matematica demostrar las siguientes generaliza-
ciones respecto a las operaciones entre conjuntos y al conjunto de partes

i=1 i=1 i=1 i=1
) <ﬂ Az) = J Af (Ley de D‘Morgan) 4) BU (ﬂ AZ-> = () (BUA;) (Distributiva)
i=1 i=1 i=1 i=1
5) B — (L_Jl Al> O (B —Ay) 6) ‘L_JIP(Ai) cP <L_Jl Ai>
ne-(fa)=0E-a
25. Sean Ajp, Ao, As, ..., A, una coleccion de conjuntos crecientes, es decir, A; C A;11

para i = 1,2,...,n — 1. Considere los conjuntos C; = Ay, Cy = Ay — Ay, ...,
C, = A, — A,_1. Demuestre

a) U CZ = An
i=1

b) C;NCj = ¢ para todo i # j coni,j =1,2...,n, es decir, los conjuntos C; son
disjuntos dos a dos
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Capitulo 6

Sistemas Numéricos

Los sistemas numeéricos son conjuntos de ntimeros sobre los cuales se definen las opera-
ciones de adicion, multiplicacion, diferencia o division, como las operaciones béasicas, sin
embargo se definen otras operaciones las cuales se derivan de éstas, como es el caso de la
potenciacion, la logaritmacion, la radicacion, el valor absoluto, la divisibilidad, etc. Dichas
operaciones cumplen unas ciertas propiedades, las cuales le confieren a los sistemas numéri-
cos estructuras algebraicas, entre las estructuras de mayor importancia son las de semi-
grupo, monoide, grupo, anillo, campo, espacio vectorial, etc. El orden en la presentacion de
los sistemas numéricos tiene un significado histérico en el cual estan involucradas diferentes
culturas y para lo que se respondieron unas determinadas preguntas que dependieron de un
contexto.

Para las operaciones de adiciéon y multiplicaciéon es necesario analizar ciertas propiedades
que cumplen dichos niimeros en el sistema numérico éstas se presentan a continuacion las
cuales estén escritas en términos de la logica cuantificacional estudiada en el capitulo 3.

Clausurativa: También llamada cerradura, donde la adicién o multiplicaciéon de los ele-
mentos de un sistema numérico es otro elemento de dicho sistema numeérico.

Conmutativa: En esta propiedad no importa el orden en que se realicen las operaciones,
es decir, (Vz)(Vy)(z +y = y + x), esto para la adicion y (Vz)(Vy)(z -y = y - z) para la
multiplicacion.

Asociativa: Esta propiedad establece que se puede agrupar los términos de la operacion
en cualquier orden pero utilizando dos elementos para garantizar que las operaciones sean
binarias, se escribe

Vo) (V) (V2)(x +y) +z=2+(y+2) v (Vo)(Vy)(Vy)((z-y)-z=2-(y-2))

Para la aplicacion de esta propiedad se requiere como minimo tres elementos.
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Modulativa: Para todos los elementos de un sistema numérico deben existir un par de
niameros que satisfagan (3z)(Vy)(z +y = y+2x =y) y @) (Vy)(z -y =y -z = y) los
cuales se llaman moédulo de la adiciéon y médulo de la multiplicacién respectivamente. Es
bien conocido que dichos modulos deben ser el cero (0) y el uno (1) respectivamente; de
acuerdo con esto se escriben las propiedades modulativas como (Vy)(0+y=y+0=1y9)y

Vy)(1-y=y-1=y).

Invertiva: Posterior a la existencia de los médulos se buscan los elementos inversos, siem-
pre que existan, los cuales deben satisfacer (Vz)(Jy)(z +y =0)y (Vz #0)(Fy)(z -y = 1),
dichos ntimeros se llaman inversos aditivos y multiplicativos de forma respectiva, que se
escriben en ese orden como —zx y % El inverso multiplicativo también se denota como z~!
y las propiedades invertivas se escriben como (Vz)(z + (—z) = 0) y (Va # 0) (z- 1 =1).
Notese que para el inverso multiplicativo, el nimero no puede ser el cero ya que se tendria

una division por cero. Es decir, el 0 es el tinico namero que no tiene inverso multiplicativo.

Distributiva: Respecto de las dos operaciones, adiciéon y multiplicacién, se presenta la
propiedad distributiva (Va)(Vy)(Vz)((x +y) - 2 = -z + y - z) la cual implica en el lado
izquierdo que la primer operacion a efectuar es la adicion y luego la multiplicacion, mientras
que en el lado derecho primero se hacen las dos multiplicaciones y luego la adicién; es decir,
dicha propiedad intercambia la jerarquia (orden) en las operaciones.

En cuanto a las estructuras algebraicas, el semigrupo es aquel conjunto donde la operaciéon
definida cumpla la propiedad clausurativa y asociativa, para el monoide deben cumplirse
las propiedades clausurativa, asociativa y modulativa, un monoide es abeliano si la operacién
es conmutativa. En la siguiente tabla se resumen las condiciones para las estructuras que
dependen de una sola operacion (puede ser la adicién o la multiplicacion)

Estructura H Clausurativa ‘ Asociativa | Conmutativa ‘ Modulativa ‘ Invertiva
Semigrupo v v

Semigrupo abeliano v v v

Monoide v v v

Monoide abeliano v v v v

Grupo v v v v
Grupo abeliano v v v v v

Para el caso de dos operaciones (en estas notas se considera la adiciéon y multiplicacion)
las estructuras se dividen en anillo, anillo con unitario, anillo conmutativo y campo
como sigue.
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Estructura H Operacion ‘ Clausu. ‘ Asocia ‘ Conmuta ‘ Modulo ‘ Inverso ‘ Distribuye

Anillo i v Y v v Y v
X v v

Anillo con + v v v v v v

unitario X N v N

Anillo + v v v v v Y

conmutativo X v v Ve

Campo + v v v v v v
X v v v v v

En las cuatro estructuras que se definieron previamente se requiere la adiciéon tenga la
estructura de grupo abeliano y las propiedad distributiva se debe satisfacer, para la multi-
plicacion varia entre semigrupo y monoide; mientras que la estructura de campo requiere
que las dos operaciones sean grupos abelianos.

6.1. Numeros Naturales

El conjunto de niimeros naturales es el mas comin de los conjuntos ya que nos permite
contar los objetos que estan a nuestro alrededor, se denota con la letra N y est& conformado
por

N:={1,2,3,4,5,...,n,n+1,...}

Para simbolizar a un nimero natural se utiliza la letra n. Ademés, por convencion, el 1
es el primero nimero natural, en otros texto puede ser que el 0 sea el primer natural; en
cualquiera de los casos, los nimeros naturales tienen un primer elemento y no tienen tltimo
(infinitos).

A cualquier nimero natural n se le asocia otro niimero natural llamado el siguiente el cual
esn+1y seescribe o(n) =n-+1 (donde o es una funciéon llamada siguiente) asi al nimero
10 le corresponde el siguiente 11 y se escribe ¢(10) = 11. Para el mismo natural n esta
asociado otro nimero natural llamado el antecesor, esto en el caso de que exista, ya que
el 1 no tiene antecesor, en otros casos el antecesor es n — 1.

Con los elementos de este sistema numérico estan asociadas las operaciones de adicion
y multiplicacién de forma usual, para los cuales se cumplen las propiedades clausurati-
va, conmutativa, asociativa, modulativa para la multiplicacién y distributiva; de ahora en
adelante llamaremos Axioma de los nameros naturales (IN.A.N) a estas propiedades
que cumplen los naturales. Axioma en el sentido que se requieren otra serie de elementos
teodricos para demostrar su veracidad, llamados los axiomas de Peano. Los naturales bajo la
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adicion tienen la estructura de un semigrupo abeliano, bajo la multiplicaciéon es un monoide
abeliano.

La propiedad modulativa de la adicién no la cumple, ya que 0 no es un natural, la propiedad
invertiva no la cumple para ninguna de las dos operaciones ya que para el 5 que es un natu-
ral, =5y % no son naturales. Para solventar algunas de estas dificultades se construye un
conjunto que contenga a los naturales.

Una operacién compuesta que se define en este sistema numérico es el factorial y corres-
ponde a la multiplicacién sucesiva de los nimeros naturales hasta el natural dado, es decir,
para n € N el factorial se denota como n! y corresponde a

nl=1x2x...xn

Por ejemplo para 5 su factorial estd dado por 5! =1 x 2 x 3 x 4 x 5 = 120, mientras que
para el 1 se sigue que 1! = 1. El factorial de un nimero natural se escribe en términos del
factorial del antecesor, siempre que sea diferente de 1, veamos

HBl=1x2x3x4x5=4l x5
| —

En general se escribe n! =n x (n — 1)L

6.2. Numeros Enteros

Como los nimeros naturales adolecen de los inversos aditivos, se crean los ntimeros negativos
y con ellos el conjunto de los niimeros enteros, que se denota como

Z:=1{.., -3-2-1,01,2,3,. ..}

La letra Z es la inicial de la palabra “Zahlen” que en alemén significa “Namero”. Los ntimeros
enteros se escribe en forma general como Z = {£n : n € N}, conjunto que ya no tiene primer
elemento y para cada uno esta definido el siguiente y el antecesor. Ademas que el moédulo
de la adicién aparece en dicho conjunto y los inversos aditivos.

Sobre los enteros se diferencian tres subconjuntos disjuntos (sin elementos comunes) que
son Z* llamados enteros positivos, Z~ que son los enteros negativos y el cero {0}, en
términos de conjuntos se escribe Z = Z~ U {0} UZ™, el conjunto de los enteros positivos
corresponde a los naturales y asi ZT = N. La palabra entero no-negativo hace alusién a
que el nimero es positivo o es el cero, igual situaciéon sucede con entero no-positivo.

De acuerdo con las propiedades de las operaciones, este sistema posee las siguientes propiedades:
Clausurativa, conmutativa, asociativa, modulativa, invertiva para la adicion, distributiva;
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esto lo llamaremos el Axioma de los niimeros enteros (N.A.Z.). En este caso no cumple
la propiedad invertiva para la multiplicaciéon, ya que estéan faltando los fraccionarios, es de-
cir, los enteros poseen la estructura de anillo conmutativo con unitario. Una consecuencia
de este axioma es que sobre el sistema de los ntmeros enteros se define la ley de signos,
donde para m, n enteros se tiene que —(—m) =my —(m+n) = (—m) + (—n).

El conjunto de los niimeros enteros se puede dividir en dos conjuntos disjuntos como son
los enteros pares y los enteros impares, denotados de forma respectiva como Zp y Z; y
definidos como Zp = {2n:n € Z} y Z; = {2n+ 1 : n € Z}, los cuales se pueden expandir
(enlistar sus elementos) como Zp = {... —4,-2,0,2,4,...} yZ;={...—3,—-1,1,3,...}.

;Seré que los pares son cerrados bajo la adiciéon y multiplicacion? ;Y los impares? Con-
sideremos los enteros pares 8 y 12, donde 8 + 12 = 20 y 8 x 12 = 96 ambos resultantes
son pares. Enteros impares son 7 y 31, la adicién produce 38 que es par y la multiplicacién
217 que es impar. En forma general se demostrara que los pares son cerrados bajo ambas
operaciones y los impares no lo son para la adicién pero si para la multiplicacion.

Para el caso de los enteros positivos se define el factorial como en el caso de los naturales
y por definiciéon se tiene en cuenta que 0! = 1, sin embargo, el factorial no existe para los
enteros negativos. Ademéas se define el valor absoluto de un ntmero entero n como la
distancia de éste al origen (al cero), lo cual se escribe como |n| y debe ser un namero no
negativo por ser una distancia. Para el caso del 3 el valor absoluto esta dado por [3| =3y

para el —5 resulta | — 5| = 5 = —(—5). En términos generales el valor absoluto se escribe
como
n n>0
In| =
-n n<0

Otra de las operaciones que se puede definir sobre el conjunto de ntimeros enteros es la
divisibilidad, donde un entero “m divide a un entero n” si y sélo si “existe un entero k tal
que n = km”. Por ejemplo 6 divide a 216 ya que 216 = 36 x 6 donde 36 € Z. La definicion
de divisibilidad equivale a decir que “n es divisible por m”, “n es un multiplo de m” o
“m es un divisor de n”. La divisibilidad se denota como m|n; en términos de la logica

cuantificacional se escribe como

m|n <= (3k € Z)(n = km)

En caso de que “m no divida a n” se escribe m { n, el hecho que m t n no quiere decir que
n|m, por ejemplo, 3 no divide a 4 por que no existe un entero k tal que 4 = 3 - k, de igual
forma 4 no divide a 3, ya que la soluciéon de 3 = 4 - k no es entera. Un caso particular en
la divisibilidad ocurre con el cero, asi 0 1 n, es decir, el cero no divide a ningin entero ya
que no existe un entero tal que n = 0-k, mientras que n|0 independiente de n ya que 0 = n-0.
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Una operacién que se desprende de la divisibilidad es la congruencia, donde “m es congruen-
te con n modulo r” si r|(m—n), dicha propiedad se denota m = n mod (r) que en términos
de la logica cuantificacional y de la definicién de divisibilidad resulta

m=>=n mod (r) <= r|(m—n) <= (Fk € Z)(m —n = kr)

Por ejemplo, los niimeros 23 y 8 son congruentes bajo el moédulo 5, ya que 23—8 = 15 = 5x 3,
una forma de determinar congruencia es a través de los residuos, 23 al dividir por 5 de-
jaresiduo 3, al igual que 8, de alli la congruencia entre los mismos, se escribe 23 =2 8 mod 5.

Consideremos ahora los nameros 36 y 45, los divisores de ambos niimeros constituyen un
conjunto dado por Dss = {1,2,3,4,6,9,12,18,36} v D45 = {1,3,5,9,15,45}, los divisores
comunes de ambos nameros son Dsg N Dys = {1, 3,9}, el cual tiene un maximo que corres-
ponde al 9 y escribimos m.c.d(36,45) = 9 para indicar que el maximo comun divisor
entre los nimeros 36 y 45 es 9, donde el 9 divide a ambos ntmeros y se escribe 9|36 y 9/45.
De acuerdo con el ejemplo se sigue que para m,n el maximo comin divisor es un nimero
s = m.c.d.(m,n) tal que s|m, s|n, pero es el mayor de los divisores. No siempre los divisores
son finitos, en el caso del cero los divisores son todos los niimeros enteros, Dy = Z.

Para los mismos nimeros del ejemplo anterior, sus multiplos constituyen un conjunto infini-
to dado por Mss = {36, 72,108,144, 180,216, ...} y My = {45,90, 135, 180, 225, 270, ...},
algunos multiplos comunes son Msg N Mys = {180,360, 540, ...} este conjunto no tiene un
maximo, por lo que se pregunta por el minimo de los multiplos comunes en cuyo caso es el
180 se escribe m.c.m(36,45) = 180 para indicar el minimo comun maultiplo, en este ca-
5036|180 y 45/180. En general, si t = m.c.m(m, n) entonces m|t y n|t con t el menor divisor.

Otro conjunto que se puede diferenciar en los enteros es el de los nimeros primos se
denotard como P y se define como el conjunto de aquellos ntimeros enteros positivos que
tienen exactamente dos divisores positivos el 1 y el mismo ntimeros, es decir, p es primo
sii D, = {1, p}. La propiedad de ser ntimero primo se llamara primalidad. En el siguiente
conjunto se enmarcan algunos de los nimeros que son primos

P =1{2,3,57,11,13,17,19,23,...}

Notese que bajo las operaciones de adicion y multiplicacion, el conjunto de ntimeros primos
no es cerrado, en efecto, para 11y 13, 114+13 =24 ¢ Py 11-13 = 143 ¢ P. El procedimiento
para encontrar los ntimeros primos empezando por descartar los pares, luego los multiplos
de 3, y asi sucesivamente, se conoce como la Criba de Eratostenes. Este conjunto de primos
tiene unas ciertas particularidades que le hacen especial y que han sido el objeto de miltiples
estudios a lo largo de la historia:

1. No hay una férmula recursiva para describir todos los elementos del conjunto de
primos, por ejemplo la expresion M,, = 2" — 1 genera algunos de los primos como son
M ={3,7,31,127,8191, ...} que se conocen como primos de Mersenne.
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2. El ntimero 2 es el Gnico que es par. El resto son impares, ya que cualquier otro par
tiene al 2 como divisor.

3. El conjunto de primos es infinito.

4. Aquellos niimeros que no son primos se les llama compuestos, en el sentido que los
nimeros compuestos exceptuando el 1, se pueden escribir como la multiplicacién de
nimeros primos. Por ejemplo, el nameros 144 es compuesto y se puede escribir como
7056 = 24 x 32 x 72 donde 2, 3, 7 son ntimeros primos. El procedimiento para escribir
un nimero compuesto en términos de nimeros primos se llama descomposicién en
factores primos.

El estudio de las operaciones (divisibilidad, primalidad, congruencias, maximo comun divi-
sor, minimo comun multiplo, etc.) y propiedades que cumplen los nimeros enteros se conoce
en matemaéticas como teoria de ntimeros.

6.3. Numeros Racionales

En el sistema de los ntimeros enteros se presenta la dificultad de no existir los inversos
multiplicativos, de acuerdo con esto se construye el conjunto de los niimeros fraccionarios,
el cual se denotard F y esta representado como el conjunto de todos los niimeros de la
forma “* donde n # 0 y tanto m como n sean enteros; elementos en este conjunto son
%, —%, %, 3,.... En dicho conjunto se obtiene el conjunto de niimeros racionales el cual se

define y denota como

Q:= {m :m,n € Z, n# 0y m.cd.(m,n) = 1}
n

Es decir, una fraccion 7+ serd un ntimero racional si de los divisores comunes entre m y
n, el maximo es 1. Las siguientes expresiones son equivalentes % = % = % = ..., de estas

fracciones el tnico que es racional es el %, ya que para % el maximo comin divisor es 2 y
por tanto no cumple la definicién. De acuerdo con esto, un ntimero fraccionario es racional
si esta simplificado al maximo y a éste lo llamaremos el menor representante.

Las operaciones de adicién y multiplicacién se definen sobre el sistema de los racionales

teniendo en cuenta que sip ="ty q = :’:—11 entonces

m mq mni + nmy m mi mmq
ptg=—F—=—"T—"— Yy pPXg=_—X_——=
n ni nny n ni nnq

Donde m, n, m1, ny son nameros enteros, n # 0 y ny # 0. Para que el resultado de la adicion

y multiplicacién sea un nuevamente un niimero racional se debe simplificar hasta la minima

expresion, como es el caso de la suma % + i = g donde 1 y 1 son ambos racionales, pero

271
6 . . . 1 1 3 . .
s no lo es, para ello se simplifica y se tiene 5 + ;7 = 4 el cual ya es un racional, igual
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situacién se puede presentar con respecto a la multiplicacién de racionales. Esto garantiza
la cerradura respecto de la adicién y la multiplicacion.

Notese que tanto el cero (0) como el uno (1) son ambos racionales, por lo que las propiedades
modulativas estan bien definidas sobre los racionales; asi como las propiedades conmutativa,
asociativa y distributiva. En el caso del racional p = 7% con n # 0 el elemento inverso mul-
tiplicativo esta dado por % = - siempre que m # 0, que es de nuevo un nimero racional,
asi las propiedades invertivas también son satisfechas. Ya que el sistema de los ntimeros
racionales cumple cada una de las propiedades de la adicién y multiplicacién y la propiedad
distributiva entonces los racionales tienen la estructura de campo.

Sean p y ¢ ntmeros racionales, para q = :Z—ll con n1 # 0 el inverso se presenta como
% = :1_11 con m; # 0, esto permite definir la divisién entre ntmeros racionales como
P—pxl=mym — mu Hichs resultado induce la ley de extremos.

q q n mi nmi

Si para el racional p = 7* se aplica sucesivamente el algoritmo de la division se tiene

que todo racional se representa como un niimero decimal que puede ser finito o infinito

periodico, para el primero el residuo es cero y para el segundo el residuo es un namero

distinto de cero que se repite infinitas veces; es asi como el racional % se representa como
1

0,5 el cual es finito, mientras que g se representa como 0,1666. .. el cual es infinito y el

periodo es el 6, se escribe como % = 0,166... = 0,18. El proceso de pasar de un racional
a un decimal periddico es reversible, por lo que si se tiene un ntimero decimal periédico se
puede encontrar un niimero racional que le gener6. Con base en esto es necesario crear un
conjunto distinto de los racionales que contenga aquellos decimales que son infinitos y no
presentan un periodo.

6.4. Numeros Irracionales

Histéricamente los nameros irracionales aparecen en los griegos al tratar de medir la hipote-
nusa de un tridangulo rectangulo isosceles cuyos catetos midan 1 (unidad), al no obtener un
valor racional que describia la medida de dicha hipotenusa, que es conocida como v/2, se
crea el conjunto de ntimeros irracionales, por definicién seran aquellos ntimeros que no
son racionales, es decir, los que no se pueden escribir como el cociente de dos enteros.
Algunos de los ntimeros irracionales son /2, v/3, 7, e, /7, /e, . . ., conjunto que es infinito y
se denotarédn como Q*. Cada uno de los ntmeros enlistados anteriormente se pueden escribir
como decimales no periédicos y por tanto deben ser infinitos, por ejemplo

T =3,141592..., e=2718281828459..., +/7=2,64575131...

Los nameros irracionales no tiene una forma especifica para describir sus elementos, es de-
cir, no tiene una forma recursiva, asi como los primos, que indiquen como se deben escribir
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los mismos. No todas las raices son irracionales, ya que al ser el radicando un cuadrado
perfecto resulta un ntimero racional, como sucede con 144 = 12 € Q.

El cero no es un numero irracional, ya que es racional, es por ello que el conjunto Q* no
cumplen las propiedades de cerradura, es decir, no necesariamente la adiciéon y multipli-
cacion de dos irracionales es otro irracional; como V/2 es irracional asi como —+/2 entonces
V2 + (—\/5) =0y V2 x v/2 = 2 donde 0 y 2 no son irracionales. Este sistema numeérico
es el tnico que no cumple ninguna de las estructuras algebraicas enunciadas anteriormente
precisamente por la propiedad de cerradura.

6.5. Numeros Reales

Los ntmeros reales son la unién de los ntimeros racionales y los niimeros irracionales se
denotan como R y se escribe como R = Q U Q*. Debido a que los nimeros irracionales no
tienen una forma recursiva para escribirse entonces los niimeros reales tampoco la tienen.
Al igual que los nimeros racionales, los reales cumplen la estructura de campo, es decir,
tanto la adiciéon como la multiplicacién conmutan, asocian, poseen elemento neutro e inver-
so, ademas de que se satisface la propiedad distributiva.

Los reales se pueden dividir en tres conjuntos que no tienen elementos comunes, los cuales
son los reales positivos, los reales negativos y el cero, los dos primeros se representan como
R* y R™. El primer conjunto cumple las propiedades de cerradura, es decir, tanto la adicién
como la multiplicaciéon de dos reales positivos es otro real positivo, caso que no ocurre con
los reales negativos, ya que cumple la clausurativa de la adicién, més no de la multiplicacién,
debido a que (—2) x (—=5) = 10 € RT. Este resultado importante se establece como axioma.

Axioma 6.1. Azxioma de Orden: Si x y z son reales positivos entonces x+z y x -z son
reales positivos también.

Adicional a las operaciones de adicion y multiplicacion se define sobre el conjunto de los
reales la relacién de orden “menor que” denotada <, donde para z,y se escribe x < y
indicando que “x es menor que y”, para lo cual es necesario que 0 < y — x, en términos del
conjunto R™ se tiene

r<y<=0<y—z<+ (y—xz) R

En el caso en que x < y, se lee “z menor o igual que y”, se tienen las dos posibilidades
r < y ox = y. De igual forma se define que z > y y ¢ < y. Una de las propiedades
més importantes en el sistema de los ntmeros reales es conocida como la propiedad de
tricotomia, la cual indica que para x,y en los reales se presenta una y solo una de las
siguientes posibilidades

r <y V r=y V x>y
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La relacion de orden le confiere al sistema de los niimeros reales la estructura de ser un
campo ordenado. La definicion de la relacion de orden se traslada (hereda) a cada uno de
los sistemas numéricos precedentes y su vez, en los reales se definen operaciones que los
sistemas anteriores presentan como es el caso del valor absoluto. Ademas se introduce la
operacion de potenciacion, que permite comprimir una multiplicacién sucesiva de un mismo
nimero, es decir, a X a X ... X a se puede escribir como a™ y asi

n

at=axax...xa

En el caso anterior la n es un natural, sin embargo, el exponente pueden ser cualquier
niimero real, asi como la base, por lo que tiene sentido hablar de expresiones como 672 = 3—16,
(—2)% = 64, (—4)73 = —é. Para a,b,n, m reales arbitrarios se cumplen las siguientes

propiedades para la potenciacién:

1. Potencia de un producto: (ab)™ = a™b"™

+m _ . n

2. Producto de potencias: ™™™ = a"a",

3. Potencia de una potencia: (a™)™ = a™™

4. a_”:ain con a # 0

5. Potencia de un cociente: (%)n = %—:. siempre que b # 0
Y se define a® = 1 siempre que a # 0, donde 0° se conoce en el contexto del célculo como
una indeterminacién. Como consecuencia de la operaciéon de potenciacion surgen las opera-
ciones de radicacién y logaritmacion y asi la expresion 62 = 216 es posible escribirla
como v/216 = 6 y logg 216 = 3, es decir, en la radicacion importa la base de la potenciaciéon
y en la logaritmacion el exponente.

Independiente del signo de la base, siempre ocurre en los reales que 2

es un nimero positivo
o cero, asi la ecuacion 22 = —2 (o ecuaciones como z* = —2) no es posible resolverla en los
reales, soluciéon que se presentaria como \/—2. A raiz de ésta dificultad presentada en los
nameros reales se construye un sistema numérico donde la dificultad se solvente, es decir,
donde se puedan resolver raices con indice par de nimeros negativos; dicho conjunto se
llama de los nimeros complejos. Notese que tiene que ser con indice par, ya que ecuaciones

como 3 = —27 tiene por solucién /—27 = —3.

6.6. Numeros Imaginarios

Con base en la dificultad presentada en los ntiimeros reales a la soluciéon de algunas ecua-
ciones se define el nimero imaginario ¢ llamado unidad imaginaria como ¢ = /—1, e
induce el conjunto

I:={ki:keR}
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Es decir, el conjunto de los imaginarios esta conformado por todos los multiplos constantes
del ntmero ¢, donde el cero es un imaginario tomando k = 0. La adicién y multiplicacion
por escalar estan dadas por ki+ ki1 = (k+k1)i y a(ki) = (ak)i donde k, k1, o son niimeros
reales. De acuerdo con la definicion de la unidad imaginaria, las potencias de 7 estan dadas
por

Y asi sucesivamente, con base en estos resultados obtenidos se tiene que las potencias de la
unidad imaginaria se repiten cada cuatro unidades y el resultado siempre es algin nimero
del conjunto {i, —1,—i, 1}; por lo tanto para determinar la n potencia de i se divide n por
4 y el residuo determina el valor de la potencia, como n = 4k + r entonces

Z-n — ,1/4k+7” — 7/4k . ’L — (,1/4)](3 ZT — i'l‘
Por ejemplo, para hallar la potencia 2043 de i se tiene que 2043 = 4 - 510 + 3 y asi i?%! =
i3 = —i. La multiplicacion entre ntimeros imaginarios no cumple la propiedad de cerradura

ya que para 5i y —6i se tiene que 5i - (—6i) = —30i?> = (—30)(—1) = 30 el cual no es un
nimero imaginario sino real. De igual forma la divisién entre ntimeros imaginarios no esta

bien definida.

6.7. Numeros Complejos

Con base en el conjunto de los nimeros imaginarios y reales se construye el conjunto de los
nameros complejos, el cual se denota como C y estd definido como

C:={a+bi:abeR}

Cada numero complejo se puede representar en un plano cartesiano, en el eje horizontal
se representan los ntimeros reales y en el eje vertical los ntimeros imaginarios, dicha plano
recibe el nombre de plano de Argand, asi cada ntimero complejo se representa a través
de un vector en el plano.

Sea z = a+bi un nimero complejo, es decir, a, b son reales, en el caso en que b = 0 entonces
z = a que representa un namero real lo cual se escribe como Re(z) = a, donde Re(z) se lee
“la parte real de 2”; si por el contrario a = 0 resulta z = b7 el cual es un niimero imaginario
se escribe I'm(z) = b se lee “la parte imaginaria de z”. De acuerdo con esto se sigue que
los niimeros complejos contienen tanto a los reales como a los imaginarios. Para el nimero
complejo z = —2+5i, la parte real es Re(z) = —2, mientras que la imaginaria es Im(z) = 5.
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Asociado al ntmeros complejo z = a + bi se encuentra otro nimero complejo llamado el
conjugado, que se escribe como Z y estd dado por Z = a — bi, es decir, intercambia la parte
imaginaria por su opuesto; geométricamente el conjugado representa el reflejo de z respecto
al eje real, asi para z = —2 + 5¢, el conjugado es Z = —2 — 5¢. Haciendo uso del teorema
de Pitagoras se sigue que la magnitud (distancia al origen) del complejo z esta dado por
Va? + b2, este ntimero real recibe el nombre de médulo del complejo z = a + bi, se denota
como |z| y asi |z] = va? + b%. En el siguiente grafico se ilustra tal situacion

Im Im
bpFr———- bpFr—————
| |
| |
z = —I—bz} z = —I—bz}
| |
| | |
a  Re —a @ Re
| |
|
zZ= —bi} J‘rz: a— b
|
|
| |
- E____ —b

Ahora bien, para los nimeros complejos z = a + bi y z1 = a1 + b1i donde a, b, a1, by son
nameros reales, se define la adicién como

z+2z1 = (a+bi)+ (a1 +bri) = (a+a1) + (b+b1)i

Es decir, se suman las partes reales y las partes imaginarias de los complejos dados. Haciendo
uso de la propiedad distributiva y de la potencia de la unidad imaginaria, la multiplicacién
entre estos nimeros complejos esta dada por

z-z1 =(a+bi)(a; + bii) = aa; + abyi + bayi + bbyi?
=(aay; — bby) + (aby + bay )i

De acuerdo con la definicién de la adiciéon y multiplicacién se sigue que los complejos son
un campo, donde el médulo de la adiciéon es el 0 y el moédulo de la multiplicaciéon es 1, el
primero imaginario y real y el segundo solo real que se puede representar como 1 =1 + 0s.
Mientras que el inverso aditivo de z = a 4+ bi es —z = —a — bi y el inverso multiplicativo es
% = a—ll—bi con a # 0 o b # 0; geométricamente el inverso aditivo es el reflejo de z = a + bi
respecto del origen. Con base en los graficos anteriores se tiene que los moédulos de z, Z y

—z son los mismos, se diferencian estos nimeros complejos en su posicion en el plano.
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Una operacién usual en los complejos se denomina multiplicar por la conjugada, asi para

la fraccion —— se multiplica en el numerador y el denominador por la conjugada que en
a+bi

este caso corresponde a a — bi y se aplica la definicion de multiplicacién como sigue

- a—bi B a—bi _a—bi
a+bi  (a+bi)(a—0bi) (a2 — (=b2)+ (—ab+ab)i a?+ b2

En la fraccién de la derecha, el denominador representa un niimero real y equivale |z|?, es
necesario que a # 0 o b # 0 para evitar la division por cero. El resultado anterior permite
definir una divisién entre complejos, para lo que es necesario dividir por la conjugada del
denominador.

En la siguiente tabla se hace un resumen de las propiedades que cumple cada sistema
numérico de acuerdo con las operaciones de adicion y multiplicaciéon lo que le confiere una
estructura algebraica, las estructuras de semigrupo, monoide y grupo son conmutativas, sin
embargo no se hace explicito en la tabla por efectos de espacio; y los nimeros irracionales
no aparecen ya que las operaciones no son clausurativas, por lo que no tiene lugar el analisis
de las propiedades; para los imaginarios sucede una condicién similar para la operacién de
multiplicacion.

Sistema | Operacion ‘ Clausu. ‘ Conmuta ‘ Asocia ‘ Modulo ‘ Inverso ‘ Distribuye H Estructura

Naturales * v v v Y M
X v v v v Monoide
Enteros + v v v v v v An'illo.con
X v v v v unitario
Racionales + Y v v Y v v Campo
X v v v v v
Reales + v v 4 Y v v Campo
X v v v v v
o + v v v v v Grupo
Imaginarios | Grupo
X
Complejos - d d ’ 4 v v Campo
X v v v N v




